452 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			452 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import sys
 | |
| import torch
 | |
| import numpy as np
 | |
| import pandas as pd
 | |
| import redis
 | |
| from omegaconf import OmegaConf
 | |
| import time
 | |
| from tqdm import tqdm
 | |
| import editdistance
 | |
| import argparse
 | |
| 
 | |
| # Add parent directories to path to import models
 | |
| sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'model_training'))
 | |
| sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'model_training_lstm'))
 | |
| 
 | |
| from model_training.rnn_model import GRUDecoder
 | |
| from model_training_lstm.rnn_model import LSTMDecoder
 | |
| from model_training.evaluate_model_helpers import *
 | |
| 
 | |
| # argument parser for command line arguments
 | |
| parser = argparse.ArgumentParser(description='Evaluate ensemble GRU+LSTM models using TTA-E on the copy task dataset.')
 | |
| parser.add_argument('--gru_model_path', type=str, default='/root/autodl-tmp/nejm-brain-to-text/data/t15_pretrained_rnn_baseline',
 | |
|                     help='Path to the pretrained GRU model directory.')
 | |
| parser.add_argument('--lstm_model_path', type=str, default='/root/autodl-tmp/nejm-brain-to-text/model_training_lstm/trained_models/baseline_rnn',
 | |
|                     help='Path to the pretrained LSTM model directory.')
 | |
| parser.add_argument('--data_dir', type=str, default='../data/hdf5_data_final',
 | |
|                     help='Path to the dataset directory (relative to the current working directory).')
 | |
| parser.add_argument('--eval_type', type=str, default='test', choices=['val', 'test'],
 | |
|                     help='Evaluation type: "val" for validation set, "test" for test set.')
 | |
| parser.add_argument('--csv_path', type=str, default='../data/t15_copyTaskData_description.csv',
 | |
|                     help='Path to the CSV file with metadata about the dataset.')
 | |
| parser.add_argument('--gpu_number', type=int, default=0,
 | |
|                     help='GPU number to use for model inference. Set to -1 to use CPU.')
 | |
| parser.add_argument('--gru_weight', type=float, default=0.5,
 | |
|                     help='Weight for GRU model in ensemble (LSTM weight = 1 - gru_weight).')
 | |
| # TTA parameters
 | |
| parser.add_argument('--tta_samples', type=int, default=5,
 | |
|                     help='Number of TTA augmentation samples per trial.')
 | |
| parser.add_argument('--tta_noise_std', type=float, default=0.01,
 | |
|                     help='Standard deviation for TTA noise augmentation.')
 | |
| parser.add_argument('--tta_smooth_range', type=float, default=0.5,
 | |
|                     help='Range for TTA smoothing kernel variation (±range from default).')
 | |
| parser.add_argument('--tta_scale_range', type=float, default=0.05,
 | |
|                     help='Range for TTA amplitude scaling (±range from 1.0).')
 | |
| parser.add_argument('--tta_cut_max', type=int, default=3,
 | |
|                     help='Maximum number of timesteps to cut from beginning in TTA.')
 | |
| args = parser.parse_args()
 | |
| 
 | |
| # Model paths
 | |
| gru_model_path = args.gru_model_path
 | |
| lstm_model_path = args.lstm_model_path
 | |
| data_dir = args.data_dir
 | |
| 
 | |
| # Ensemble weights
 | |
| gru_weight = args.gru_weight
 | |
| lstm_weight = 1.0 - gru_weight
 | |
| 
 | |
| # TTA parameters
 | |
| tta_samples = args.tta_samples
 | |
| tta_noise_std = args.tta_noise_std
 | |
| tta_smooth_range = args.tta_smooth_range
 | |
| tta_scale_range = args.tta_scale_range
 | |
| tta_cut_max = args.tta_cut_max
 | |
| 
 | |
| print(f"TTA-E Configuration:")
 | |
| print(f"GRU weight: {gru_weight:.2f}")
 | |
| print(f"LSTM weight: {lstm_weight:.2f}")
 | |
| print(f"TTA samples per trial: {tta_samples}")
 | |
| print(f"TTA noise std: {tta_noise_std}")
 | |
| print(f"TTA smooth range: ±{tta_smooth_range}")
 | |
| print(f"TTA scale range: ±{tta_scale_range}")
 | |
| print(f"TTA max cut: {tta_cut_max} timesteps")
 | |
| print(f"GRU model path: {gru_model_path}")
 | |
| print(f"LSTM model path: {lstm_model_path}")
 | |
| print()
 | |
| 
 | |
| # Define evaluation type
 | |
| eval_type = args.eval_type
 | |
| 
 | |
| # Load CSV file
 | |
| b2txt_csv_df = pd.read_csv(args.csv_path)
 | |
| 
 | |
| # Load model arguments for both models
 | |
| gru_model_args = OmegaConf.load(os.path.join(gru_model_path, 'checkpoint/args.yaml'))
 | |
| lstm_model_args = OmegaConf.load(os.path.join(lstm_model_path, 'checkpoint/args.yaml'))
 | |
| 
 | |
| # Set up GPU device
 | |
| gpu_number = args.gpu_number
 | |
| if torch.cuda.is_available() and gpu_number >= 0:
 | |
|     if gpu_number >= torch.cuda.device_count():
 | |
|         raise ValueError(f'GPU number {gpu_number} is out of range. Available GPUs: {torch.cuda.device_count()}')
 | |
|     device = f'cuda:{gpu_number}'
 | |
|     device = torch.device(device)
 | |
|     print(f'Using {device} for model inference.')
 | |
| else:
 | |
|     if gpu_number >= 0:
 | |
|         print(f'GPU number {gpu_number} requested but not available.')
 | |
|     print('Using CPU for model inference.')
 | |
|     device = torch.device('cpu')
 | |
| 
 | |
| # Define GRU model
 | |
| gru_model = GRUDecoder(
 | |
|     neural_dim=gru_model_args['model']['n_input_features'],
 | |
|     n_units=gru_model_args['model']['n_units'], 
 | |
|     n_days=len(gru_model_args['dataset']['sessions']),
 | |
|     n_classes=gru_model_args['dataset']['n_classes'],
 | |
|     rnn_dropout=gru_model_args['model']['rnn_dropout'],
 | |
|     input_dropout=gru_model_args['model']['input_network']['input_layer_dropout'],
 | |
|     n_layers=gru_model_args['model']['n_layers'],
 | |
|     patch_size=gru_model_args['model']['patch_size'],
 | |
|     patch_stride=gru_model_args['model']['patch_stride'],
 | |
| )
 | |
| 
 | |
| # Load GRU model weights
 | |
| gru_checkpoint = torch.load(os.path.join(gru_model_path, 'checkpoint/best_checkpoint'), 
 | |
|                            weights_only=False, map_location=device)
 | |
| # Rename keys to not start with "module." (happens if model was saved with DataParallel)
 | |
| for key in list(gru_checkpoint['model_state_dict'].keys()):
 | |
|     gru_checkpoint['model_state_dict'][key.replace("module.", "")] = gru_checkpoint['model_state_dict'].pop(key)
 | |
|     gru_checkpoint['model_state_dict'][key.replace("_orig_mod.", "")] = gru_checkpoint['model_state_dict'].pop(key)
 | |
| gru_model.load_state_dict(gru_checkpoint['model_state_dict'])
 | |
| 
 | |
| # Define LSTM model
 | |
| lstm_model = LSTMDecoder(
 | |
|     neural_dim=lstm_model_args['model']['n_input_features'],
 | |
|     n_units=lstm_model_args['model']['n_units'], 
 | |
|     n_days=len(lstm_model_args['dataset']['sessions']),
 | |
|     n_classes=lstm_model_args['dataset']['n_classes'],
 | |
|     rnn_dropout=lstm_model_args['model']['rnn_dropout'],
 | |
|     input_dropout=lstm_model_args['model']['input_network']['input_layer_dropout'],
 | |
|     n_layers=lstm_model_args['model']['n_layers'],
 | |
|     patch_size=lstm_model_args['model']['patch_size'],
 | |
|     patch_stride=lstm_model_args['model']['patch_stride'],
 | |
| )
 | |
| 
 | |
| # Load LSTM model weights
 | |
| lstm_checkpoint = torch.load(os.path.join(lstm_model_path, 'checkpoint/best_checkpoint'), 
 | |
|                             weights_only=False, map_location=device)
 | |
| # Rename keys to not start with "module." (happens if model was saved with DataParallel)
 | |
| for key in list(lstm_checkpoint['model_state_dict'].keys()):
 | |
|     lstm_checkpoint['model_state_dict'][key.replace("module.", "")] = lstm_checkpoint['model_state_dict'].pop(key)
 | |
|     lstm_checkpoint['model_state_dict'][key.replace("_orig_mod.", "")] = lstm_checkpoint['model_state_dict'].pop(key)
 | |
| lstm_model.load_state_dict(lstm_checkpoint['model_state_dict'])
 | |
| 
 | |
| # Add models to device
 | |
| gru_model.to(device)
 | |
| lstm_model.to(device)
 | |
| 
 | |
| # Set models to eval mode
 | |
| gru_model.eval()
 | |
| lstm_model.eval()
 | |
| 
 | |
| print("Both models loaded successfully!")
 | |
| print()
 | |
| 
 | |
| # TTA-E inference function
 | |
| def runTTAEnsembleDecodingStep(x, input_layer, gru_model, lstm_model, gru_model_args, lstm_model_args, 
 | |
|                               device, gru_weight, lstm_weight, tta_samples, tta_noise_std, 
 | |
|                               tta_smooth_range, tta_scale_range, tta_cut_max):
 | |
|     """
 | |
|     Run TTA-E (Test Time Augmentation + Ensemble) inference:
 | |
|     1. Apply multiple data augmentations to each input
 | |
|     2. Run both GRU and LSTM models on each augmented version
 | |
|     3. Ensemble model outputs with weights
 | |
|     4. Average across all TTA samples
 | |
|     """
 | |
|     all_ensemble_logits = []
 | |
|     
 | |
|     # Get default smoothing parameters
 | |
|     default_smooth_std = gru_model_args['dataset']['data_transforms']['smooth_kernel_std']
 | |
|     default_smooth_size = gru_model_args['dataset']['data_transforms']['smooth_kernel_size']
 | |
|     
 | |
|     for tta_iter in range(tta_samples):
 | |
|         # Apply different augmentation strategies
 | |
|         x_augmented = x.clone()
 | |
|         
 | |
|         if tta_iter == 0:
 | |
|             # Original data (baseline)
 | |
|             augmentation_type = "original"
 | |
|         elif tta_iter == 1:
 | |
|             # Add Gaussian noise
 | |
|             noise = torch.randn_like(x_augmented) * tta_noise_std
 | |
|             x_augmented = x_augmented + noise
 | |
|             augmentation_type = f"noise_std_{tta_noise_std}"
 | |
|         elif tta_iter == 2:
 | |
|             # Amplitude scaling
 | |
|             scale_factor = 1.0 + (torch.rand(1).item() - 0.5) * 2 * tta_scale_range
 | |
|             x_augmented = x_augmented * scale_factor
 | |
|             augmentation_type = f"scale_{scale_factor:.3f}"
 | |
|         elif tta_iter == 3 and tta_cut_max > 0:
 | |
|             # Time shift (circular shift instead of cutting to maintain length)
 | |
|             shift_amount = np.random.randint(1, min(tta_cut_max + 1, x_augmented.shape[1] // 8))
 | |
|             # Circular shift: move beginning to end
 | |
|             x_augmented = torch.cat([x_augmented[:, shift_amount:, :], 
 | |
|                                    x_augmented[:, :shift_amount, :]], dim=1)
 | |
|             augmentation_type = f"shift_{shift_amount}"
 | |
|         else:
 | |
|             # Smoothing variation
 | |
|             smooth_variation = (torch.rand(1).item() - 0.5) * 2 * tta_smooth_range
 | |
|             varied_smooth_std = max(0.5, default_smooth_std + smooth_variation)
 | |
|             augmentation_type = f"smooth_std_{varied_smooth_std:.2f}"
 | |
| 
 | |
|         # Use autocast for efficiency
 | |
|         with torch.autocast(device_type="cuda", enabled=gru_model_args['use_amp'], dtype=torch.bfloat16):
 | |
|             
 | |
|             # Apply Gaussian smoothing with potentially varied parameters
 | |
|             if tta_iter < 4 or tta_iter == 0:
 | |
|                 # Use default smoothing for most augmentations
 | |
|                 x_smoothed = gauss_smooth(
 | |
|                     inputs=x_augmented, 
 | |
|                     device=device,
 | |
|                     smooth_kernel_std=default_smooth_std,
 | |
|                     smooth_kernel_size=default_smooth_size,
 | |
|                     padding='valid',
 | |
|                 )
 | |
|             else:
 | |
|                 # Use varied smoothing
 | |
|                 x_smoothed = gauss_smooth(
 | |
|                     inputs=x_augmented, 
 | |
|                     device=device,
 | |
|                     smooth_kernel_std=varied_smooth_std,
 | |
|                     smooth_kernel_size=default_smooth_size,
 | |
|                     padding='valid',
 | |
|                 )
 | |
| 
 | |
|             with torch.no_grad():
 | |
|                 # Get GRU logits
 | |
|                 gru_logits, _ = gru_model(
 | |
|                     x=x_smoothed,
 | |
|                     day_idx=torch.tensor([input_layer], device=device),
 | |
|                     states=None,
 | |
|                     return_state=True,
 | |
|                 )
 | |
|                 
 | |
|                 # Get LSTM logits
 | |
|                 lstm_logits, _ = lstm_model(
 | |
|                     x=x_smoothed,
 | |
|                     day_idx=torch.tensor([input_layer], device=device),
 | |
|                     states=None,
 | |
|                     return_state=True,
 | |
|                 )
 | |
|                 
 | |
|                 # Ensemble using weighted averaging
 | |
|                 ensemble_logits = gru_weight * gru_logits + lstm_weight * lstm_logits
 | |
|                 all_ensemble_logits.append(ensemble_logits)
 | |
| 
 | |
|     # TTA fusion: Handle potentially different tensor shapes by finding minimum length
 | |
|     if len(all_ensemble_logits) > 1:
 | |
|         # Find the minimum sequence length among all TTA samples
 | |
|         min_length = min([logits.shape[1] for logits in all_ensemble_logits])
 | |
|         
 | |
|         # Truncate all tensors to the minimum length
 | |
|         truncated_logits = []
 | |
|         for logits in all_ensemble_logits:
 | |
|             if logits.shape[1] > min_length:
 | |
|                 truncated_logits.append(logits[:, :min_length, :])
 | |
|             else:
 | |
|                 truncated_logits.append(logits)
 | |
|         
 | |
|         # Now stack and average
 | |
|         final_logits = torch.mean(torch.stack(truncated_logits), dim=0)
 | |
|     else:
 | |
|         final_logits = all_ensemble_logits[0]
 | |
|     
 | |
|     # Convert logits from bfloat16 to float32
 | |
|     return final_logits.float().cpu().numpy()
 | |
| 
 | |
| # Load data for each session (using GRU model args as reference since they should be compatible)
 | |
| test_data = {}
 | |
| total_test_trials = 0
 | |
| for session in gru_model_args['dataset']['sessions']:
 | |
|     files = [f for f in os.listdir(os.path.join(data_dir, session)) if f.endswith('.hdf5')]
 | |
|     if f'data_{eval_type}.hdf5' in files:
 | |
|         eval_file = os.path.join(data_dir, session, f'data_{eval_type}.hdf5')
 | |
| 
 | |
|         data = load_h5py_file(eval_file, b2txt_csv_df)
 | |
|         test_data[session] = data
 | |
| 
 | |
|         total_test_trials += len(test_data[session]["neural_features"])
 | |
|         print(f'Loaded {len(test_data[session]["neural_features"])} {eval_type} trials for session {session}.')
 | |
| print(f'Total number of {eval_type} trials: {total_test_trials}')
 | |
| print()
 | |
| 
 | |
| # Put neural data through the TTA-E ensemble model to get phoneme predictions (logits)
 | |
| with tqdm(total=total_test_trials, desc=f'TTA-E inference ({tta_samples} samples/trial)', unit='trial') as pbar:
 | |
|     for session, data in test_data.items():
 | |
| 
 | |
|         data['logits'] = []
 | |
|         data['pred_seq'] = []
 | |
|         input_layer = gru_model_args['dataset']['sessions'].index(session)
 | |
|         
 | |
|         for trial in range(len(data['neural_features'])):
 | |
|             # Get neural input for the trial
 | |
|             neural_input = data['neural_features'][trial]
 | |
| 
 | |
|             # Add batch dimension
 | |
|             neural_input = np.expand_dims(neural_input, axis=0)
 | |
| 
 | |
|             # Convert to torch tensor
 | |
|             neural_input = torch.tensor(neural_input, device=device, dtype=torch.bfloat16)
 | |
| 
 | |
|             # Run TTA-E decoding step
 | |
|             ensemble_logits = runTTAEnsembleDecodingStep(
 | |
|                 neural_input, input_layer, gru_model, lstm_model, 
 | |
|                 gru_model_args, lstm_model_args, device, gru_weight, lstm_weight,
 | |
|                 tta_samples, tta_noise_std, tta_smooth_range, tta_scale_range, tta_cut_max
 | |
|             )
 | |
|             data['logits'].append(ensemble_logits)
 | |
| 
 | |
|             pbar.update(1)
 | |
| pbar.close()
 | |
| 
 | |
| # Convert logits to phoneme sequences and print them out
 | |
| for session, data in test_data.items():
 | |
|     data['pred_seq'] = []
 | |
|     for trial in range(len(data['logits'])):
 | |
|         logits = data['logits'][trial][0]
 | |
|         pred_seq = np.argmax(logits, axis=-1)
 | |
|         # Remove blanks (0)
 | |
|         pred_seq = [int(p) for p in pred_seq if p != 0]
 | |
|         # Remove consecutive duplicates
 | |
|         pred_seq = [pred_seq[i] for i in range(len(pred_seq)) if i == 0 or pred_seq[i] != pred_seq[i-1]]
 | |
|         # Convert to phonemes
 | |
|         pred_seq = [LOGIT_TO_PHONEME[p] for p in pred_seq]
 | |
|         # Add to data
 | |
|         data['pred_seq'].append(pred_seq)
 | |
| 
 | |
|         # Print out the predicted sequences
 | |
|         block_num = data['block_num'][trial]
 | |
|         trial_num = data['trial_num'][trial]
 | |
|         print(f'Session: {session}, Block: {block_num}, Trial: {trial_num}')
 | |
|         if eval_type == 'val':
 | |
|             sentence_label = data['sentence_label'][trial]
 | |
|             true_seq = data['seq_class_ids'][trial][0:data['seq_len'][trial]]
 | |
|             true_seq = [LOGIT_TO_PHONEME[p] for p in true_seq]
 | |
| 
 | |
|             print(f'Sentence label:      {sentence_label}')
 | |
|             print(f'True sequence:       {" ".join(true_seq)}')
 | |
|         print(f'Predicted Sequence:  {" ".join(pred_seq)}')
 | |
|         print()
 | |
| 
 | |
| # Language model inference via redis
 | |
| # Make sure that the standalone language model is running on the localhost redis ip
 | |
| # See README.md for instructions on how to run the language model
 | |
| r = redis.Redis(host='localhost', port=6379, db=0)
 | |
| r.flushall()  # Clear all streams in redis
 | |
| 
 | |
| # Define redis streams for the remote language model
 | |
| remote_lm_input_stream = 'remote_lm_input'
 | |
| remote_lm_output_partial_stream = 'remote_lm_output_partial'
 | |
| remote_lm_output_final_stream = 'remote_lm_output_final'
 | |
| 
 | |
| # Set timestamps for last entries seen in the redis streams
 | |
| remote_lm_output_partial_lastEntrySeen = get_current_redis_time_ms(r)
 | |
| remote_lm_output_final_lastEntrySeen = get_current_redis_time_ms(r)
 | |
| remote_lm_done_resetting_lastEntrySeen = get_current_redis_time_ms(r)
 | |
| remote_lm_done_finalizing_lastEntrySeen = get_current_redis_time_ms(r)
 | |
| remote_lm_done_updating_lastEntrySeen = get_current_redis_time_ms(r)
 | |
| 
 | |
| lm_results = {
 | |
|     'session': [],
 | |
|     'block': [],
 | |
|     'trial': [],
 | |
|     'true_sentence': [],
 | |
|     'pred_sentence': [],
 | |
| }
 | |
| 
 | |
| # Loop through all trials and put logits into the remote language model to get text predictions
 | |
| with tqdm(total=total_test_trials, desc='Running remote language model', unit='trial') as pbar:
 | |
|     for session in test_data.keys():
 | |
|         for trial in range(len(test_data[session]['logits'])):
 | |
|             # Get trial logits and rearrange them for the LM
 | |
|             logits = rearrange_speech_logits_pt(test_data[session]['logits'][trial])[0]
 | |
| 
 | |
|             # Reset language model
 | |
|             remote_lm_done_resetting_lastEntrySeen = reset_remote_language_model(r, remote_lm_done_resetting_lastEntrySeen)
 | |
|             
 | |
|             # Put logits into LM
 | |
|             remote_lm_output_partial_lastEntrySeen, decoded = send_logits_to_remote_lm(
 | |
|                 r,
 | |
|                 remote_lm_input_stream,
 | |
|                 remote_lm_output_partial_stream,
 | |
|                 remote_lm_output_partial_lastEntrySeen,
 | |
|                 logits,
 | |
|             )
 | |
| 
 | |
|             # Finalize remote LM
 | |
|             remote_lm_output_final_lastEntrySeen, lm_out = finalize_remote_lm(
 | |
|                 r,
 | |
|                 remote_lm_output_final_stream,
 | |
|                 remote_lm_output_final_lastEntrySeen,
 | |
|             )
 | |
| 
 | |
|             # Get the best candidate sentence
 | |
|             best_candidate_sentence = lm_out['candidate_sentences'][0]
 | |
| 
 | |
|             # Store results
 | |
|             lm_results['session'].append(session)
 | |
|             lm_results['block'].append(test_data[session]['block_num'][trial])
 | |
|             lm_results['trial'].append(test_data[session]['trial_num'][trial])
 | |
|             if eval_type == 'val':
 | |
|                 lm_results['true_sentence'].append(test_data[session]['sentence_label'][trial])
 | |
|             else:
 | |
|                 lm_results['true_sentence'].append(None)
 | |
|             lm_results['pred_sentence'].append(best_candidate_sentence)
 | |
| 
 | |
|             # Update progress bar
 | |
|             pbar.update(1)
 | |
| pbar.close()
 | |
| 
 | |
| # If using the validation set, calculate the aggregate word error rate (WER)
 | |
| if eval_type == 'val':
 | |
|     total_true_length = 0
 | |
|     total_edit_distance = 0
 | |
| 
 | |
|     lm_results['edit_distance'] = []
 | |
|     lm_results['num_words'] = []
 | |
| 
 | |
|     for i in range(len(lm_results['pred_sentence'])):
 | |
|         true_sentence = remove_punctuation(lm_results['true_sentence'][i]).strip()
 | |
|         pred_sentence = remove_punctuation(lm_results['pred_sentence'][i]).strip()
 | |
|         ed = editdistance.eval(true_sentence.split(), pred_sentence.split())
 | |
| 
 | |
|         total_true_length += len(true_sentence.split())
 | |
|         total_edit_distance += ed
 | |
| 
 | |
|         lm_results['edit_distance'].append(ed)
 | |
|         lm_results['num_words'].append(len(true_sentence.split()))
 | |
| 
 | |
|         print(f'{lm_results["session"][i]} - Block {lm_results["block"][i]}, Trial {lm_results["trial"][i]}')
 | |
|         print(f'True sentence:       {true_sentence}')
 | |
|         print(f'Predicted sentence:  {pred_sentence}')
 | |
|         print(f'WER: {ed} / {len(true_sentence.split())} = {100 * ed / len(true_sentence.split()):.2f}%')
 | |
|         print()
 | |
| 
 | |
|     print(f'Total true sentence length: {total_true_length}')
 | |
|     print(f'Total edit distance: {total_edit_distance}')
 | |
|     print(f'Aggregate Word Error Rate (WER): {100 * total_edit_distance / total_true_length:.2f}%')
 | |
| 
 | |
| # Write predicted sentences to a CSV file with timestamp and TTA-E info
 | |
| timestamp = time.strftime("%Y%m%d_%H%M%S")
 | |
| output_file = f'TTA-E_gru{gru_weight:.1f}_lstm{lstm_weight:.1f}_samples{tta_samples}_{eval_type}_{timestamp}.csv'
 | |
| output_path = os.path.join(os.path.dirname(__file__), output_file)
 | |
| 
 | |
| ids = [i for i in range(len(lm_results['pred_sentence']))]
 | |
| df_out = pd.DataFrame({'id': ids, 'text': lm_results['pred_sentence']})
 | |
| df_out.to_csv(output_path, index=False)
 | |
| 
 | |
| print(f'\nResults saved to: {output_path}')
 | |
| print(f'TTA-E configuration: GRU weight = {gru_weight:.2f}, LSTM weight = {lstm_weight:.2f}, TTA samples = {tta_samples}')
 | 
