269 lines
10 KiB
Python
269 lines
10 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
|
||
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
|
||
# Author: di.wu@mobvoi.com (DI WU)
|
||
"""Encoder self-attention layer definition."""
|
||
|
||
from typing import Optional, Tuple
|
||
|
||
import torch
|
||
from torch import nn
|
||
|
||
|
||
class TransformerEncoderLayer(nn.Module):
|
||
"""Encoder layer module.
|
||
|
||
Args:
|
||
size (int): Input dimension.
|
||
self_attn (torch.nn.Module): Self-attention module instance.
|
||
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
||
instance can be used as the argument.
|
||
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||
`PositionwiseFeedForward`, instance can be used as the argument.
|
||
dropout_rate (float): Dropout rate.
|
||
normalize_before (bool):
|
||
True: use layer_norm before each sub-block.
|
||
False: to use layer_norm after each sub-block.
|
||
concat_after (bool): Whether to concat attention layer's input and
|
||
output.
|
||
True: x -> x + linear(concat(x, att(x)))
|
||
False: x -> x + att(x)
|
||
|
||
"""
|
||
def __init__(
|
||
self,
|
||
size: int,
|
||
self_attn: torch.nn.Module,
|
||
feed_forward: torch.nn.Module,
|
||
dropout_rate: float,
|
||
normalize_before: bool = True,
|
||
concat_after: bool = False,
|
||
):
|
||
"""Construct an EncoderLayer object."""
|
||
super().__init__()
|
||
self.self_attn = self_attn
|
||
self.feed_forward = feed_forward
|
||
self.norm1 = nn.LayerNorm(size, eps=1e-12)
|
||
self.norm2 = nn.LayerNorm(size, eps=1e-12)
|
||
self.dropout = nn.Dropout(dropout_rate)
|
||
self.size = size
|
||
self.normalize_before = normalize_before
|
||
self.concat_after = concat_after
|
||
# concat_linear may be not used in forward fuction,
|
||
# but will be saved in the *.pt
|
||
self.concat_linear = nn.Linear(size + size, size)
|
||
|
||
def forward(
|
||
self,
|
||
x: torch.Tensor,
|
||
mask: torch.Tensor,
|
||
pos_emb: torch.Tensor,
|
||
mask_pad: Optional[torch.Tensor] = None,
|
||
output_cache: Optional[torch.Tensor] = None,
|
||
cnn_cache: Optional[torch.Tensor] = None,
|
||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
"""Compute encoded features.
|
||
|
||
Args:
|
||
x (torch.Tensor): Input tensor (#batch, time, size).
|
||
mask (torch.Tensor): Mask tensor for the input (#batch, time).
|
||
pos_emb (torch.Tensor): just for interface compatibility
|
||
to ConformerEncoderLayer
|
||
mask_pad (torch.Tensor): does not used in transformer layer,
|
||
just for unified api with conformer.
|
||
output_cache (torch.Tensor): Cache tensor of the output
|
||
(#batch, time2, size), time2 < time in x.
|
||
cnn_cache (torch.Tensor): not used here, it's for interface
|
||
compatibility to ConformerEncoderLayer
|
||
Returns:
|
||
torch.Tensor: Output tensor (#batch, time, size).
|
||
torch.Tensor: Mask tensor (#batch, time).
|
||
|
||
"""
|
||
residual = x
|
||
if self.normalize_before:
|
||
x = self.norm1(x)
|
||
|
||
if output_cache is None:
|
||
x_q = x
|
||
else:
|
||
assert output_cache.size(0) == x.size(0)
|
||
assert output_cache.size(2) == self.size
|
||
assert output_cache.size(1) < x.size(1)
|
||
chunk = x.size(1) - output_cache.size(1)
|
||
x_q = x[:, -chunk:, :]
|
||
residual = residual[:, -chunk:, :]
|
||
mask = mask[:, -chunk:, :]
|
||
|
||
if self.concat_after:
|
||
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
|
||
x = residual + self.concat_linear(x_concat)
|
||
else:
|
||
x = residual + self.dropout(self.self_attn(x_q, x, x, mask))
|
||
if not self.normalize_before:
|
||
x = self.norm1(x)
|
||
|
||
residual = x
|
||
if self.normalize_before:
|
||
x = self.norm2(x)
|
||
x = residual + self.dropout(self.feed_forward(x))
|
||
if not self.normalize_before:
|
||
x = self.norm2(x)
|
||
|
||
if output_cache is not None:
|
||
x = torch.cat([output_cache, x], dim=1)
|
||
|
||
fake_cnn_cache = torch.tensor([0.0], dtype=x.dtype, device=x.device)
|
||
return x, mask, fake_cnn_cache
|
||
|
||
|
||
class ConformerEncoderLayer(nn.Module):
|
||
"""Encoder layer module.
|
||
Args:
|
||
size (int): Input dimension.
|
||
self_attn (torch.nn.Module): Self-attention module instance.
|
||
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
||
instance can be used as the argument.
|
||
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||
`PositionwiseFeedForward` instance can be used as the argument.
|
||
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
|
||
instance.
|
||
`PositionwiseFeedForward` instance can be used as the argument.
|
||
conv_module (torch.nn.Module): Convolution module instance.
|
||
`ConvlutionModule` instance can be used as the argument.
|
||
dropout_rate (float): Dropout rate.
|
||
normalize_before (bool):
|
||
True: use layer_norm before each sub-block.
|
||
False: use layer_norm after each sub-block.
|
||
concat_after (bool): Whether to concat attention layer's input and
|
||
output.
|
||
True: x -> x + linear(concat(x, att(x)))
|
||
False: x -> x + att(x)
|
||
"""
|
||
def __init__(
|
||
self,
|
||
size: int,
|
||
self_attn: torch.nn.Module,
|
||
feed_forward: Optional[nn.Module] = None,
|
||
feed_forward_macaron: Optional[nn.Module] = None,
|
||
conv_module: Optional[nn.Module] = None,
|
||
dropout_rate: float = 0.1,
|
||
normalize_before: bool = True,
|
||
concat_after: bool = False,
|
||
):
|
||
"""Construct an EncoderLayer object."""
|
||
super().__init__()
|
||
self.self_attn = self_attn
|
||
self.feed_forward = feed_forward
|
||
self.feed_forward_macaron = feed_forward_macaron
|
||
self.conv_module = conv_module
|
||
self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module
|
||
self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module
|
||
if feed_forward_macaron is not None:
|
||
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12)
|
||
self.ff_scale = 0.5
|
||
else:
|
||
self.ff_scale = 1.0
|
||
if self.conv_module is not None:
|
||
self.norm_conv = nn.LayerNorm(size,
|
||
eps=1e-12) # for the CNN module
|
||
self.norm_final = nn.LayerNorm(
|
||
size, eps=1e-12) # for the final output of the block
|
||
self.dropout = nn.Dropout(dropout_rate)
|
||
self.size = size
|
||
self.normalize_before = normalize_before
|
||
self.concat_after = concat_after
|
||
self.concat_linear = nn.Linear(size + size, size)
|
||
|
||
def forward(
|
||
self,
|
||
x: torch.Tensor,
|
||
mask: torch.Tensor,
|
||
pos_emb: torch.Tensor,
|
||
mask_pad: Optional[torch.Tensor] = None,
|
||
output_cache: Optional[torch.Tensor] = None,
|
||
cnn_cache: Optional[torch.Tensor] = None,
|
||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
"""Compute encoded features.
|
||
|
||
Args:
|
||
x (torch.Tensor): (#batch, time, size)
|
||
mask (torch.Tensor): Mask tensor for the input (#batch, time,time).
|
||
pos_emb (torch.Tensor): positional encoding, must not be None
|
||
for ConformerEncoderLayer.
|
||
mask_pad (torch.Tensor): batch padding mask used for conv module.
|
||
(#batch, 1,time)
|
||
output_cache (torch.Tensor): Cache tensor of the output
|
||
(#batch, time2, size), time2 < time in x.
|
||
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
||
Returns:
|
||
torch.Tensor: Output tensor (#batch, time, size).
|
||
torch.Tensor: Mask tensor (#batch, time).
|
||
"""
|
||
|
||
# whether to use macaron style
|
||
if self.feed_forward_macaron is not None:
|
||
residual = x
|
||
if self.normalize_before:
|
||
x = self.norm_ff_macaron(x)
|
||
x = residual + self.ff_scale * self.dropout(
|
||
self.feed_forward_macaron(x))
|
||
if not self.normalize_before:
|
||
x = self.norm_ff_macaron(x)
|
||
|
||
# multi-headed self-attention module
|
||
residual = x
|
||
if self.normalize_before:
|
||
x = self.norm_mha(x)
|
||
|
||
if output_cache is None:
|
||
x_q = x
|
||
else:
|
||
assert output_cache.size(0) == x.size(0)
|
||
assert output_cache.size(2) == self.size
|
||
assert output_cache.size(1) < x.size(1)
|
||
chunk = x.size(1) - output_cache.size(1)
|
||
x_q = x[:, -chunk:, :]
|
||
residual = residual[:, -chunk:, :]
|
||
mask = mask[:, -chunk:, :]
|
||
|
||
x_att = self.self_attn(x_q, x, x, mask, pos_emb)
|
||
if self.concat_after:
|
||
x_concat = torch.cat((x, x_att), dim=-1)
|
||
x = residual + self.concat_linear(x_concat)
|
||
else:
|
||
x = residual + self.dropout(x_att)
|
||
if not self.normalize_before:
|
||
x = self.norm_mha(x)
|
||
|
||
# convolution module
|
||
# Fake new cnn cache here, and then change it in conv_module
|
||
new_cnn_cache = torch.tensor([0.0], dtype=x.dtype, device=x.device)
|
||
if self.conv_module is not None:
|
||
residual = x
|
||
if self.normalize_before:
|
||
x = self.norm_conv(x)
|
||
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
|
||
x = residual + self.dropout(x)
|
||
|
||
if not self.normalize_before:
|
||
x = self.norm_conv(x)
|
||
|
||
# feed forward module
|
||
residual = x
|
||
if self.normalize_before:
|
||
x = self.norm_ff(x)
|
||
|
||
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
||
if not self.normalize_before:
|
||
x = self.norm_ff(x)
|
||
|
||
if self.conv_module is not None:
|
||
x = self.norm_final(x)
|
||
|
||
if output_cache is not None:
|
||
x = torch.cat([output_cache, x], dim=1)
|
||
|
||
return x, mask, new_cnn_cache
|