294 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			294 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | ||
| """
 | ||
| 分阶段TTA-E参数搜索
 | ||
| 先粗搜索找到有希望的区域,再精细搜索
 | ||
| """
 | ||
| 
 | ||
| import os
 | ||
| import sys
 | ||
| import argparse
 | ||
| import json
 | ||
| import numpy as np
 | ||
| from itertools import product
 | ||
| import subprocess
 | ||
| import time
 | ||
| 
 | ||
| def parse_arguments():
 | ||
|     parser = argparse.ArgumentParser(description='分阶段TTA-E参数搜索')
 | ||
|     
 | ||
|     # 基础参数
 | ||
|     parser.add_argument('--base_script', type=str, default='evaluate_model.py')
 | ||
|     parser.add_argument('--data_dir', type=str, default='../data/hdf5_data_final')
 | ||
|     parser.add_argument('--eval_type', type=str, default='val')
 | ||
|     parser.add_argument('--gpu_number', type=int, default=0)
 | ||
|     
 | ||
|     # 搜索阶段控制
 | ||
|     parser.add_argument('--stage', type=str, default='coarse', choices=['coarse', 'fine', 'both'],
 | ||
|                         help='搜索阶段:coarse=粗搜索,fine=精细搜索,both=两阶段')
 | ||
|     parser.add_argument('--coarse_results', type=str, default='coarse_results.json',
 | ||
|                         help='粗搜索结果文件(用于精细搜索阶段)')
 | ||
|     parser.add_argument('--final_results', type=str, default='final_results.json',
 | ||
|                         help='最终结果文件')
 | ||
|     
 | ||
|     # 粗搜索参数(步长0.2)
 | ||
|     parser.add_argument('--coarse_gru_weights', type=str, default='0.2,0.4,0.6,0.8,1.0')
 | ||
|     parser.add_argument('--coarse_tta_weights', type=str, default='0.0,0.5,1.0')
 | ||
|     
 | ||
|     # 精细搜索参数(步长0.1,在最佳配置周围)
 | ||
|     parser.add_argument('--fine_range', type=float, default=0.3,
 | ||
|                         help='精细搜索范围(围绕最佳配置的±范围)')
 | ||
|     parser.add_argument('--fine_step', type=float, default=0.1,
 | ||
|                         help='精细搜索步长')
 | ||
|     
 | ||
|     # 筛选控制
 | ||
|     parser.add_argument('--top_k', type=int, default=5,
 | ||
|                         help='选择前K个最佳配置进行精细搜索')
 | ||
|     
 | ||
|     return parser.parse_args()
 | ||
| 
 | ||
| def generate_coarse_search_space(args):
 | ||
|     """生成粗搜索空间"""
 | ||
|     gru_weights = [float(x.strip()) for x in args.coarse_gru_weights.split(',')]
 | ||
|     tta_weights = [float(x.strip()) for x in args.coarse_tta_weights.split(',')]
 | ||
|     
 | ||
|     search_space = []
 | ||
|     for gru_w in gru_weights:
 | ||
|         for noise_w in tta_weights:
 | ||
|             for scale_w in tta_weights:
 | ||
|                 for shift_w in tta_weights:
 | ||
|                     for smooth_w in tta_weights:
 | ||
|                         search_space.append((gru_w, 1.0, noise_w, scale_w, shift_w, smooth_w))
 | ||
|     
 | ||
|     return search_space
 | ||
| 
 | ||
| def generate_fine_search_space(best_configs, args):
 | ||
|     """基于最佳配置生成精细搜索空间"""
 | ||
|     fine_search_space = []
 | ||
|     
 | ||
|     for config in best_configs:
 | ||
|         gru_w = config['gru_weight']
 | ||
|         tta_w = config['tta_weights']
 | ||
|         
 | ||
|         # 在每个参数周围生成精细搜索点
 | ||
|         gru_range = np.arange(
 | ||
|             max(0.1, gru_w - args.fine_range),
 | ||
|             min(1.0, gru_w + args.fine_range) + args.fine_step,
 | ||
|             args.fine_step
 | ||
|         )
 | ||
|         
 | ||
|         for param_name in ['noise', 'scale', 'shift', 'smooth']:
 | ||
|             base_val = tta_w[param_name]
 | ||
|             param_range = np.arange(
 | ||
|                 max(0.0, base_val - args.fine_range),
 | ||
|                 min(1.0, base_val + args.fine_range) + args.fine_step,
 | ||
|                 args.fine_step
 | ||
|             )
 | ||
|             
 | ||
|             # 围绕当前最佳配置生成邻域
 | ||
|             for gru_fine in gru_range:
 | ||
|                 for noise_fine in param_range if param_name == 'noise' else [tta_w['noise']]:
 | ||
|                     for scale_fine in param_range if param_name == 'scale' else [tta_w['scale']]:
 | ||
|                         for shift_fine in param_range if param_name == 'shift' else [tta_w['shift']]:
 | ||
|                             for smooth_fine in param_range if param_name == 'smooth' else [tta_w['smooth']]:
 | ||
|                                 config_tuple = (
 | ||
|                                     round(gru_fine, 1), 1.0,
 | ||
|                                     round(noise_fine, 1), round(scale_fine, 1),
 | ||
|                                     round(shift_fine, 1), round(smooth_fine, 1)
 | ||
|                                 )
 | ||
|                                 if config_tuple not in fine_search_space:
 | ||
|                                     fine_search_space.append(config_tuple)
 | ||
|     
 | ||
|     return fine_search_space
 | ||
| 
 | ||
| def run_evaluation(config, args):
 | ||
|     """运行单个配置的评估"""
 | ||
|     gru_w, orig_w, noise_w, scale_w, shift_w, smooth_w = config
 | ||
|     
 | ||
|     tta_weights_str = f"{orig_w},{noise_w},{scale_w},{shift_w},{smooth_w}"
 | ||
|     
 | ||
|     cmd = [
 | ||
|         'python', args.base_script,
 | ||
|         '--gru_weight', str(gru_w),
 | ||
|         '--tta_weights', tta_weights_str,
 | ||
|         '--data_dir', args.data_dir,
 | ||
|         '--eval_type', args.eval_type,
 | ||
|         '--gpu_number', str(args.gpu_number)
 | ||
|     ]
 | ||
|     
 | ||
|     try:
 | ||
|         result = subprocess.run(cmd, capture_output=True, text=True, timeout=1800)  # 30分钟超时
 | ||
|         
 | ||
|         # 解析PER结果
 | ||
|         per = None
 | ||
|         for line in result.stdout.split('\n'):
 | ||
|             if 'Aggregate Phoneme Error Rate (PER):' in line:
 | ||
|                 per_str = line.split(':')[-1].strip().replace('%', '')
 | ||
|                 per = float(per_str)
 | ||
|                 break
 | ||
|         
 | ||
|         if per is None:
 | ||
|             print(f"⚠️  无法解析PER结果: {config}")
 | ||
|             per = float('inf')
 | ||
|         
 | ||
|         return {
 | ||
|             'config': config,
 | ||
|             'gru_weight': gru_w,
 | ||
|             'tta_weights': {
 | ||
|                 'original': orig_w,
 | ||
|                 'noise': noise_w,
 | ||
|                 'scale': scale_w,
 | ||
|                 'shift': shift_w,
 | ||
|                 'smooth': smooth_w
 | ||
|             },
 | ||
|             'per': per,
 | ||
|             'success': result.returncode == 0,
 | ||
|             'stdout': result.stdout[:1000],  # 只保存前1000字符
 | ||
|         }
 | ||
|         
 | ||
|     except subprocess.TimeoutExpired:
 | ||
|         return {'config': config, 'per': float('inf'), 'error': 'Timeout'}
 | ||
|     except Exception as e:
 | ||
|         return {'config': config, 'per': float('inf'), 'error': str(e)}
 | ||
| 
 | ||
| def run_coarse_search(args):
 | ||
|     """运行粗搜索"""
 | ||
|     print("🔍 第一阶段:粗搜索")
 | ||
|     print("=" * 50)
 | ||
|     
 | ||
|     search_space = generate_coarse_search_space(args)
 | ||
|     total_configs = len(search_space)
 | ||
|     print(f"粗搜索空间: {total_configs} 个配置")
 | ||
|     print(f"GRU权重: {args.coarse_gru_weights}")
 | ||
|     print(f"TTA权重: {args.coarse_tta_weights}")
 | ||
|     print()
 | ||
|     
 | ||
|     results = []
 | ||
|     best_per = float('inf')
 | ||
|     
 | ||
|     for i, config in enumerate(search_space):
 | ||
|         print(f"进度: {i+1}/{total_configs} ({100*(i+1)/total_configs:.1f}%)")
 | ||
|         print(f"配置: GRU={config[0]:.1f}, TTA=({config[2]},{config[3]},{config[4]},{config[5]})")
 | ||
|         
 | ||
|         result = run_evaluation(config, args)
 | ||
|         results.append(result)
 | ||
|         
 | ||
|         if result['per'] < best_per:
 | ||
|             best_per = result['per']
 | ||
|             print(f"🎯 新最佳PER: {best_per:.3f}%")
 | ||
|         else:
 | ||
|             print(f"   PER: {result['per']:.3f}%")
 | ||
|     
 | ||
|     # 保存粗搜索结果
 | ||
|     coarse_results = {
 | ||
|         'results': results,
 | ||
|         'stage': 'coarse',
 | ||
|         'timestamp': time.strftime("%Y-%m-%d %H:%M:%S"),
 | ||
|         'args': vars(args)
 | ||
|     }
 | ||
|     
 | ||
|     with open(args.coarse_results, 'w') as f:
 | ||
|         json.dump(coarse_results, f, indent=2)
 | ||
|     
 | ||
|     # 选择最佳配置
 | ||
|     valid_results = [r for r in results if r['per'] != float('inf')]
 | ||
|     best_configs = sorted(valid_results, key=lambda x: x['per'])[:args.top_k]
 | ||
|     
 | ||
|     print(f"\n粗搜索完成!选择前{args.top_k}个配置进行精细搜索:")
 | ||
|     for i, config in enumerate(best_configs):
 | ||
|         print(f"{i+1}. PER={config['per']:.3f}% | GRU={config['gru_weight']:.1f} | {config['tta_weights']}")
 | ||
|     
 | ||
|     return best_configs
 | ||
| 
 | ||
| def run_fine_search(best_configs, args):
 | ||
|     """运行精细搜索"""
 | ||
|     print(f"\n🔬 第二阶段:精细搜索")
 | ||
|     print("=" * 50)
 | ||
|     
 | ||
|     fine_search_space = generate_fine_search_space(best_configs, args)
 | ||
|     total_configs = len(fine_search_space)
 | ||
|     print(f"精细搜索空间: {total_configs} 个配置")
 | ||
|     print(f"搜索范围: ±{args.fine_range}")
 | ||
|     print(f"搜索步长: {args.fine_step}")
 | ||
|     print()
 | ||
|     
 | ||
|     results = []
 | ||
|     best_per = float('inf')
 | ||
|     
 | ||
|     for i, config in enumerate(fine_search_space):
 | ||
|         print(f"进度: {i+1}/{total_configs} ({100*(i+1)/total_configs:.1f}%)")
 | ||
|         
 | ||
|         result = run_evaluation(config, args)
 | ||
|         results.append(result)
 | ||
|         
 | ||
|         if result['per'] < best_per:
 | ||
|             best_per = result['per']
 | ||
|             print(f"🎯 新最佳PER: {best_per:.3f}%")
 | ||
|             print(f"   配置: GRU={result['gru_weight']:.1f} | {result['tta_weights']}")
 | ||
|         
 | ||
|         if i % 10 == 0:  # 每10个配置显示一次进度
 | ||
|             print(f"   当前PER: {result['per']:.3f}%")
 | ||
|     
 | ||
|     return results
 | ||
| 
 | ||
| def main():
 | ||
|     args = parse_arguments()
 | ||
|     
 | ||
|     print("🚀 分阶段TTA-E参数搜索")
 | ||
|     print("=" * 60)
 | ||
|     
 | ||
|     if args.stage in ['coarse', 'both']:
 | ||
|         # 运行粗搜索
 | ||
|         best_configs = run_coarse_search(args)
 | ||
|         
 | ||
|         if args.stage == 'coarse':
 | ||
|             print(f"\n✅ 粗搜索完成,结果保存到: {args.coarse_results}")
 | ||
|             return
 | ||
|     else:
 | ||
|         # 从文件加载粗搜索结果
 | ||
|         print(f"📁 加载粗搜索结果: {args.coarse_results}")
 | ||
|         with open(args.coarse_results, 'r') as f:
 | ||
|             coarse_data = json.load(f)
 | ||
|         valid_results = [r for r in coarse_data['results'] if r['per'] != float('inf')]
 | ||
|         best_configs = sorted(valid_results, key=lambda x: x['per'])[:args.top_k]
 | ||
|     
 | ||
|     if args.stage in ['fine', 'both']:
 | ||
|         # 运行精细搜索
 | ||
|         fine_results = run_fine_search(best_configs, args)
 | ||
|         
 | ||
|         # 合并所有结果
 | ||
|         all_results = fine_results
 | ||
|         if args.stage == 'both':
 | ||
|             all_results.extend([r for r in coarse_data['results'] if 'results' in locals()])
 | ||
|         
 | ||
|         # 找到最终最佳配置
 | ||
|         valid_results = [r for r in all_results if r['per'] != float('inf')]
 | ||
|         final_best = min(valid_results, key=lambda x: x['per'])
 | ||
|         
 | ||
|         # 保存最终结果
 | ||
|         final_results = {
 | ||
|             'best_config': final_best,
 | ||
|             'all_fine_results': fine_results,
 | ||
|             'stage': args.stage,
 | ||
|             'timestamp': time.strftime("%Y-%m-%d %H:%M:%S"),
 | ||
|             'args': vars(args)
 | ||
|         }
 | ||
|         
 | ||
|         with open(args.final_results, 'w') as f:
 | ||
|             json.dump(final_results, f, indent=2)
 | ||
|         
 | ||
|         print(f"\n🏆 最终最佳配置:")
 | ||
|         print(f"PER: {final_best['per']:.3f}%")
 | ||
|         print(f"GRU权重: {final_best['gru_weight']:.1f}")
 | ||
|         print(f"TTA权重: {final_best['tta_weights']}")
 | ||
|         print(f"结果保存到: {args.final_results}")
 | ||
|         
 | ||
|         # 显示top-10
 | ||
|         sorted_results = sorted(valid_results, key=lambda x: x['per'])[:10]
 | ||
|         print(f"\n📊 Top-10配置:")
 | ||
|         for i, result in enumerate(sorted_results):
 | ||
|             tw = result['tta_weights']
 | ||
|             print(f"{i+1:2d}. PER={result['per']:6.3f}% | GRU={result['gru_weight']:.1f} | "
 | ||
|                   f"TTA=({tw['noise']:.1f},{tw['scale']:.1f},{tw['shift']:.1f},{tw['smooth']:.1f})")
 | ||
| 
 | ||
| if __name__ == "__main__":
 | ||
|     main() | 
