3.3 KiB
3.3 KiB
TPU Training Issues Record
Core Problem
Primary Error: ValueError: You need to use 'even_batches=False' when the batch sampler has no batch size
This error occurs when using TPU with Hugging Face Accelerate framework and custom DataLoaders that have batch_size=None
.
Root Cause Analysis
- Our custom dataset returns full batches (not individual samples)
- DataLoader is created with
batch_size=None
because batching is handled by the dataset - TPU training with Accelerate requires
even_batches=False
for this configuration - The
even_batches
parameter needs to be set in the DataLoader preparation, not Accelerator initialization
Failed Solution Attempts
Attempt 1: Adding even_batches to Accelerator.init()
self.accelerator = Accelerator(
mixed_precision='bf16',
gradient_accumulation_steps=1,
even_batches=False # ❌ WRONG - This parameter doesn't exist in Accelerator.__init__()
)
Error: TypeError: Accelerator.__init__() got an unexpected keyword argument 'even_batches'
Attempt 2: Complex TPU-specific DataLoader handling
- Created conditional TPU/GPU logic
- Manual data movement with
to(device)
- Custom collate_fn modifications
- Result: Overengineered solution that didn't address root cause
Attempt 3: Memory optimization
- Reduced TPU cores from 8 to 2
- Reduced batch size
- Misunderstood TPU memory allocation (fewer cores = less total memory, not more per core)
Attempt 4: Removing all TPU-specific logic
- Let Accelerator handle everything automatically
- Result: Same even_batches error returned
Correct Solution
The even_batches=False
parameter should be passed using DataLoaderConfiguration
when initializing the Accelerator:
from accelerate import Accelerator, DataLoaderConfiguration
# Configure DataLoader behavior for TPU
dataloader_config = DataLoaderConfiguration(
even_batches=False # Required for batch_size=None DataLoaders
)
self.accelerator = Accelerator(
mixed_precision='bf16' if args.get('use_amp', True) else 'no',
gradient_accumulation_steps=args.get('gradient_accumulation_steps', 1),
log_with=None,
project_dir=args.get('output_dir', './output'),
dataloader_config=dataloader_config # ✅ CORRECT - Pass DataLoaderConfiguration
)
Technical Context
- Model: Brain-to-text RNN with 687M parameters
- Dataset: Custom dataset that returns full batches (batch_size=None in DataLoader)
- TPU Config: 8 cores × 16GB = 128GB total memory
- Batch Size: 64
- Framework: PyTorch XLA with Hugging Face Accelerate
Key Files Modified
model_training_nnn/rnn_trainer.py
- Main trainer classmodel_training_nnn/rnn_args.yaml
- Configuration filemodel_training_nnn/dataset.py
- Custom dataset class
Memory Allocation Facts
- TPU v5e-8: 8 cores × 16GB = 128GB total
- Fewer cores = LESS total memory (not more per core)
Next Steps
- Implement correct even_batches=False in accelerator.prepare()
- Test TPU training without overengineering
- Verify memory usage with 8 cores configuration
Lessons Learned
- Don't overcomplicate TPU conversion - it should be straightforward
- Read Accelerate documentation carefully for parameter placement
- Document issues immediately to avoid confusion
- TPU memory allocation: fewer cores = less total memory