44 lines
1.4 KiB
Python
44 lines
1.4 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2019 Shigeki Karita
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
"""Positionwise feed forward layer definition."""
|
|
|
|
import torch
|
|
|
|
|
|
class PositionwiseFeedForward(torch.nn.Module):
|
|
"""Positionwise feed forward layer.
|
|
|
|
FeedForward are appied on each position of the sequence.
|
|
The output dim is same with the input dim.
|
|
|
|
Args:
|
|
idim (int): Input dimenstion.
|
|
hidden_units (int): The number of hidden units.
|
|
dropout_rate (float): Dropout rate.
|
|
activation (torch.nn.Module): Activation function
|
|
"""
|
|
def __init__(self,
|
|
idim: int,
|
|
hidden_units: int,
|
|
dropout_rate: float,
|
|
activation: torch.nn.Module = torch.nn.ReLU()):
|
|
"""Construct a PositionwiseFeedForward object."""
|
|
super(PositionwiseFeedForward, self).__init__()
|
|
self.w_1 = torch.nn.Linear(idim, hidden_units)
|
|
self.activation = activation
|
|
self.dropout = torch.nn.Dropout(dropout_rate)
|
|
self.w_2 = torch.nn.Linear(hidden_units, idim)
|
|
|
|
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
|
"""Forward function.
|
|
|
|
Args:
|
|
xs: input tensor (B, L, D)
|
|
Returns:
|
|
output tensor, (B, L, D)
|
|
"""
|
|
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
|