Files
b2txt25/language_model/srilm-1.7.3/man/html/Prob.3.html
2025-07-02 12:18:09 -07:00

97 lines
2.5 KiB
HTML

<! $Id: Prob.3,v 1.3 2019/09/09 22:35:37 stolcke Exp $>
<HTML>
<HEADER>
<TITLE>Prob</TITLE>
<BODY>
<H1>Prob</H1>
<H2> NAME </H2>
Prob - Probabilities for SRILM
<H2> SYNOPSIS </H2>
<PRE>
<B> #include &lt;Prob.h&gt; </B>
</PRE>
<H2> DESCRIPTION </H2>
<B> Prob </B>
is a collection of types, constants and utility functions for handling
probabilities in the SRILM library.
<H2> TYPES </H2>
<DL>
<DT><B> Prob </B>
<DD>
A floating point number representing a probability.
<DT><B> LogP </B>
<DD>
Logarithm to base 10 of a probability.
</DD>
</DL>
<H2> CONSTANTS </H2>
<DL>
<DT><B> LogP_Zero </B>
<DD>
Log of probability 0.
<DT><B> LogP_Inf </B>
<DD>
Log of probability infinity (not a legal probability, of course).
<DT><B> LogP_One </B>
<DD>
Log of probability 1.
<DT><B> LogP_Precision </B>
<DD>
The number of significant digits in a LogP
<DT><B> Prob_Epsilon </B>
<DD>
A positive value close to 0; probability sums less than this should be
considered effectively zero.
</DD>
</DL>
<H2> FUNCTIONS </H2>
<DL>
<DT><B> Boolean parseLogP(const char *<I>string</I>, LogP &amp;<I>prob</I>) </B>
<DD>
Converts a floating point string representation into a LogP.
Returns
<B> true </B>
iff the number was parsed correctly.
This function should be much faster than generic C library functions
for floating point parsing.
Also, it parses singular LogP's (plus/minus infinity) correctly.
<DT><B> Prob LogPtoPPL(LogP <I>prob</I>) </B>
<DD>
Converts a LogP into a perplexity (PPL).
<DT><B> ProbToLogP(Prob \fPprob\fP) </B>
<DD>
Converts a probability into a LogP.
<DT><B> LogP MixLogP(LogP <I>prob1</I>, LogP <I>prob2</I>, double <I>lambda</I>) </B>
<DD>
Computes the LogP resulting from interpolating two LogP's.
If <I>p1</I> and <I>p2</I> are probabilities corresponding to <I>prob1</I>
and <I>prob2</I>, respectively, then the result is the LogP corresponding
to <I>lambda</I> * <I>p1</I> + (1 - <I>lambda</I>) * <I>p2</I>.
</DD>
</DL>
<P>
The following functions deal with <I>bytelogs</I>.
Bytelogs are logarithms scaled to represent probabilties and likelihoods
as a short integer in SRI's DECIPHER(TM) recognizer
(bytelog(<I>p</I>) = log(<I>p</I>) * 10000.5 / 1024).
<DL>
<DT><B> double ProbToBytelog(Prob <I>prob</I>) </B>
<DD>
Converts a probability to a bytelog.
<DT><B> double LogPtoBytelog(LogP <I>prob</I>) </B>
<DD>
Convert a LogP to a bytelog.
<DT><B> LogP BytelogToLogP(double <I>bytelog</I>) </B>
<DD>
Convert a bytelog to a LogP.
</DD>
</DL>
<H2> SEE ALSO </H2>
<H2> BUGS </H2>
<H2> AUTHOR </H2>
Andreas Stolcke &lt;stolcke@icsi.berkeley.edu&gt;
<BR>
Copyright (c) 1995-1996 SRI International
</BODY>
</HTML>