# 简化的TPU训练配置 - 更快编译 model: n_input_features: 512 n_units: 384 # 减少从768到384 rnn_dropout: 0.2 # 减少dropout rnn_trainable: true n_layers: 3 # 减少从5到3层 patch_size: 8 # 减少从14到8 patch_stride: 4 input_network: n_input_layers: 1 input_layer_sizes: - 512 input_trainable: true input_layer_dropout: 0.1 # 减少dropout mode: train use_amp: true # TPU分布式训练设置 use_tpu: true num_tpu_cores: 8 gradient_accumulation_steps: 4 # 增加梯度累积补偿小batch output_dir: trained_models/simple_rnn checkpoint_dir: trained_models/simple_rnn/checkpoint init_from_checkpoint: false save_best_checkpoint: true save_val_metrics: true num_training_batches: 1000 # 先测试1000个batch lr_scheduler_type: cosine lr_max: 0.003 # 稍微降低学习率 lr_min: 0.0001 lr_decay_steps: 1000 lr_warmup_steps: 100 lr_max_day: 0.003 lr_min_day: 0.0001 lr_decay_steps_day: 1000 lr_warmup_steps_day: 100 beta0: 0.9 beta1: 0.999 epsilon: 0.1 weight_decay: 0.001 weight_decay_day: 0 seed: 10 grad_norm_clip_value: 5 # 减少梯度裁剪 batches_per_train_log: 50 # 更频繁的日志 batches_per_val_step: 200 log_individual_day_val_PER: true # 禁用对抗训练进行快速测试 adversarial: enabled: false # 先禁用对抗训练 dataset: data_transforms: white_noise_std: 0.5 # 减少数据增强 constant_offset_std: 0.1 random_walk_std: 0.0 random_walk_axis: -1 static_gain_std: 0.0 random_cut: 1 # 减少随机裁剪 smooth_kernel_size: 50 # 减少平滑核大小 smooth_data: true smooth_kernel_std: 1 neural_dim: 512 batch_size: 16 # 减少batch size从32到16 n_classes: 41 max_seq_elements: 300 # 减少序列长度 days_per_batch: 2 # 减少每批天数 seed: 1 num_dataloader_workers: 0 loader_shuffle: false test_percentage: 0.1 dataset_dir: ../data/hdf5_data_final # 只使用部分session进行快速测试 sessions: - t15.2023.08.11 - t15.2023.08.13 - t15.2023.08.18 - t15.2023.08.20 dataset_probability_val: - 0 - 1 - 1 - 1