# Pretrained ngram language models A pretrained 1gram language model is included in this repository at `language_model/pretrained_language_models/openwebtext_1gram_lm_sil`. Pretrained 3gram and 5gram language models are available for download [here](https://datadryad.org/dataset/doi:10.5061/dryad.x69p8czpq) (`languageModel.tar.gz` and `languageModel_5gram.tar.gz`) and should likewise be placed in the [`pretrained_language_models`](pretrained_language_models) directory. Note that the 3gram model requires ~60GB of RAM, and the 5gram model requires ~300GB of RAM. Furthermore, OPT 6.7b requires a GPU with at least ~12.4 GB of VRAM to load for inference. # Dependencies ``` CMake >= 3.14 gcc >= 10.1 pytorch == 1.13.1 ``` To install CMake and gcc on Ubuntu, simply run: ```bash sudo apt-get install build-essential sudo apt-get install cmake ``` # Install language model python package Use the `setup_lm.sh` script in the root directory of this repository to create the `b2txt25_lm` conda env and install the `lm-decoder` package to it. Before install, make sure that there is no `build` or `fc_base` directory in your [`runtime/server/x86`](runtime/server/x86) directory, as this may cause the build to fail. # Using a pretrained ngram language model The [`language-model-standalone.py`](language-model-standalone.py) script included here is made to work with [`evaluate_model.py`](../model_training/evaluate_model.py). `language-model-standalone.py` will do the following when run: 1. Initialize `opt-6.7b` it on the specified gpu (`--gpu_number` arg). The first time you run the script, it will automatically download `opt-6.7b` from huggingface. 2. Initialize the ngram language model (specified with the `--lm_path` arg) 3. Connect to the `localhost` redis server (or a different server, specified by the `--redis_ip` and `--redis_port` args) 4. Wait to receive phoneme logits via redis, and then make word predictions and pass them back via redis. ### `language-model-standalone.py` input args See the bottom of the `language-model-standalone.py` script for a full list of input args. ### run a 1gram model To run the 1gram language model from the root directory of this repository: ```bash conda activate b2txt25_lm python language_model/language-model-standalone.py --lm_path language_model/pretrained_language_models/openwebtext_1gram_lm_sil --do_opt --nbest 100 --acoustic_scale 0.325 --blank_penalty 90 --alpha 0.55 --redis_ip localhost --gpu_number 0 ``` ### run a 3gram model To run the 3gram language model from the root directory of this repository (requires ~60GB RAM): ```bash conda activate b2txt25_lm python language_model/language-model-standalone.py --lm_path language_model/pretrained_language_models/openwebtext_3gram_lm_sil --do_opt --nbest 100 --acoustic_scale 0.325 --blank_penalty 90 --alpha 0.55 --redis_ip localhost --gpu_number 0 ``` ### run a 5gram model To run the 5gram language model from the root directory of this repository (requires ~300GB of RAM): ```bash conda activate b2txt25_lm python language_model/language-model-standalone.py --lm_path language_model/pretrained_language_models/openwebtext_5gram_lm_sil --rescore --do_opt --nbest 100 --acoustic_scale 0.325 --blank_penalty 90 --alpha 0.55 --redis_ip localhost --gpu_number 0 ``` # Build a new phoneme-to-words ngram language model from scratch 1. First, build binaries for building the language model: 1. Build SRILM: ```bash cd srilm-1.7.3 export SRILM=$PWD make MAKE_PIC=yes World make cleanest export PATH=$PATH:$PWD/bin/i686-m64 ``` 2. Build openfst and other stuff: ```bash cd runtime/server/x86 mkdir build cd build cmake .. make -j8 ``` 2. Build ngram LM: ```bash cd ./examples/speech/s0/ run.sh output_dir dict_path train_corpus sil_prob formatted_train_corpus prune_threshold order ```