2025-09-16 02:22:59,436: Requested GPU 1 not available. Using GPU 0 instead. 2025-09-16 02:22:59,586: Using device: cuda:0 2025-09-16 02:23:00,159: Using torch.compile 2025-09-16 02:23:01,335: Initialized RNN decoding model 2025-09-16 02:23:01,335: OptimizedModule( (_orig_mod): LSTMDecoder( (day_layer_activation): Softsign() (day_weights): ParameterList( (0): Parameter containing: [torch.float32 of size 512x512] (1): Parameter containing: [torch.float32 of size 512x512] (2): Parameter containing: [torch.float32 of size 512x512] (3): Parameter containing: [torch.float32 of size 512x512] (4): Parameter containing: [torch.float32 of size 512x512] (5): Parameter containing: [torch.float32 of size 512x512] (6): Parameter containing: [torch.float32 of size 512x512] (7): Parameter containing: [torch.float32 of size 512x512] (8): Parameter containing: [torch.float32 of size 512x512] (9): Parameter containing: [torch.float32 of size 512x512] (10): Parameter containing: [torch.float32 of size 512x512] (11): Parameter containing: [torch.float32 of size 512x512] (12): Parameter containing: [torch.float32 of size 512x512] (13): Parameter containing: [torch.float32 of size 512x512] (14): Parameter containing: [torch.float32 of size 512x512] (15): Parameter containing: [torch.float32 of size 512x512] (16): Parameter containing: [torch.float32 of size 512x512] (17): Parameter containing: [torch.float32 of size 512x512] (18): Parameter containing: [torch.float32 of size 512x512] (19): Parameter containing: [torch.float32 of size 512x512] (20): Parameter containing: [torch.float32 of size 512x512] (21): Parameter containing: [torch.float32 of size 512x512] (22): Parameter containing: [torch.float32 of size 512x512] (23): Parameter containing: [torch.float32 of size 512x512] (24): Parameter containing: [torch.float32 of size 512x512] (25): Parameter containing: [torch.float32 of size 512x512] (26): Parameter containing: [torch.float32 of size 512x512] (27): Parameter containing: [torch.float32 of size 512x512] (28): Parameter containing: [torch.float32 of size 512x512] (29): Parameter containing: [torch.float32 of size 512x512] (30): Parameter containing: [torch.float32 of size 512x512] (31): Parameter containing: [torch.float32 of size 512x512] (32): Parameter containing: [torch.float32 of size 512x512] (33): Parameter containing: [torch.float32 of size 512x512] (34): Parameter containing: [torch.float32 of size 512x512] (35): Parameter containing: [torch.float32 of size 512x512] (36): Parameter containing: [torch.float32 of size 512x512] (37): Parameter containing: [torch.float32 of size 512x512] (38): Parameter containing: [torch.float32 of size 512x512] (39): Parameter containing: [torch.float32 of size 512x512] (40): Parameter containing: [torch.float32 of size 512x512] (41): Parameter containing: [torch.float32 of size 512x512] (42): Parameter containing: [torch.float32 of size 512x512] (43): Parameter containing: [torch.float32 of size 512x512] (44): Parameter containing: [torch.float32 of size 512x512] ) (day_biases): ParameterList( (0): Parameter containing: [torch.float32 of size 1x512] (1): Parameter containing: [torch.float32 of size 1x512] (2): Parameter containing: [torch.float32 of size 1x512] (3): Parameter containing: [torch.float32 of size 1x512] (4): Parameter containing: [torch.float32 of size 1x512] (5): Parameter containing: [torch.float32 of size 1x512] (6): Parameter containing: [torch.float32 of size 1x512] (7): Parameter containing: [torch.float32 of size 1x512] (8): Parameter containing: [torch.float32 of size 1x512] (9): Parameter containing: [torch.float32 of size 1x512] (10): Parameter containing: [torch.float32 of size 1x512] (11): Parameter containing: [torch.float32 of size 1x512] (12): Parameter containing: [torch.float32 of size 1x512] (13): Parameter containing: [torch.float32 of size 1x512] (14): Parameter containing: [torch.float32 of size 1x512] (15): Parameter containing: [torch.float32 of size 1x512] (16): Parameter containing: [torch.float32 of size 1x512] (17): Parameter containing: [torch.float32 of size 1x512] (18): Parameter containing: [torch.float32 of size 1x512] (19): Parameter containing: [torch.float32 of size 1x512] (20): Parameter containing: [torch.float32 of size 1x512] (21): Parameter containing: [torch.float32 of size 1x512] (22): Parameter containing: [torch.float32 of size 1x512] (23): Parameter containing: [torch.float32 of size 1x512] (24): Parameter containing: [torch.float32 of size 1x512] (25): Parameter containing: [torch.float32 of size 1x512] (26): Parameter containing: [torch.float32 of size 1x512] (27): Parameter containing: [torch.float32 of size 1x512] (28): Parameter containing: [torch.float32 of size 1x512] (29): Parameter containing: [torch.float32 of size 1x512] (30): Parameter containing: [torch.float32 of size 1x512] (31): Parameter containing: [torch.float32 of size 1x512] (32): Parameter containing: [torch.float32 of size 1x512] (33): Parameter containing: [torch.float32 of size 1x512] (34): Parameter containing: [torch.float32 of size 1x512] (35): Parameter containing: [torch.float32 of size 1x512] (36): Parameter containing: [torch.float32 of size 1x512] (37): Parameter containing: [torch.float32 of size 1x512] (38): Parameter containing: [torch.float32 of size 1x512] (39): Parameter containing: [torch.float32 of size 1x512] (40): Parameter containing: [torch.float32 of size 1x512] (41): Parameter containing: [torch.float32 of size 1x512] (42): Parameter containing: [torch.float32 of size 1x512] (43): Parameter containing: [torch.float32 of size 1x512] (44): Parameter containing: [torch.float32 of size 1x512] ) (day_layer_dropout): Dropout(p=0.2, inplace=False) (lstm): LSTM(7168, 768, num_layers=5, batch_first=True, dropout=0.4) (out): Linear(in_features=768, out_features=41, bias=True) ) ) 2025-09-16 02:23:01,336: Model has 55,136,297 parameters 2025-09-16 02:23:01,336: Model has 11,819,520 day-specific parameters | 21.44% of total parameters 2025-09-16 02:23:09,866: Successfully initialized datasets 2025-09-16 02:23:32,809: Train batch 0: loss: 612.68 grad norm: 836.66 time: 20.267 2025-09-16 02:23:32,809: Running test after training batch: 0 2025-09-16 02:24:12,899: Val batch 0: PER (avg): 0.9121 CTC Loss (avg): 672.5561 time: 40.090 2025-09-16 02:24:12,899: t15.2023.08.13 val PER: 0.9200 2025-09-16 02:24:12,899: t15.2023.08.18 val PER: 0.9187 2025-09-16 02:24:12,899: t15.2023.08.20 val PER: 0.9150 2025-09-16 02:24:12,899: t15.2023.08.25 val PER: 0.9081 2025-09-16 02:24:12,899: t15.2023.08.27 val PER: 0.8923 2025-09-16 02:24:12,899: t15.2023.09.01 val PER: 0.9164 2025-09-16 02:24:12,900: t15.2023.09.03 val PER: 0.9145 2025-09-16 02:24:12,900: t15.2023.09.24 val PER: 0.9211 2025-09-16 02:24:12,900: t15.2023.09.29 val PER: 0.8998 2025-09-16 02:24:12,900: t15.2023.10.01 val PER: 0.9141 2025-09-16 02:24:12,900: t15.2023.10.06 val PER: 0.9139 2025-09-16 02:24:12,900: t15.2023.10.08 val PER: 0.9039 2025-09-16 02:24:12,900: t15.2023.10.13 val PER: 0.9030 2025-09-16 02:24:12,900: t15.2023.10.15 val PER: 0.9011 2025-09-16 02:24:12,900: t15.2023.10.20 val PER: 0.9195 2025-09-16 02:24:12,900: t15.2023.10.22 val PER: 0.9176 2025-09-16 02:24:12,900: t15.2023.11.03 val PER: 0.9132 2025-09-16 02:24:12,900: t15.2023.11.04 val PER: 0.9454 2025-09-16 02:24:12,900: t15.2023.11.17 val PER: 0.8989 2025-09-16 02:24:12,900: t15.2023.11.19 val PER: 0.9062 2025-09-16 02:24:12,900: t15.2023.11.26 val PER: 0.9116 2025-09-16 02:24:12,900: t15.2023.12.03 val PER: 0.9118 2025-09-16 02:24:12,900: t15.2023.12.08 val PER: 0.9108 2025-09-16 02:24:12,900: t15.2023.12.10 val PER: 0.9067 2025-09-16 02:24:12,901: t15.2023.12.17 val PER: 0.9075 2025-09-16 02:24:12,901: t15.2023.12.29 val PER: 0.9149 2025-09-16 02:24:12,901: t15.2024.02.25 val PER: 0.9129 2025-09-16 02:24:12,901: t15.2024.03.08 val PER: 0.9260 2025-09-16 02:24:12,901: t15.2024.03.15 val PER: 0.9043 2025-09-16 02:24:12,901: t15.2024.03.17 val PER: 0.9086 2025-09-16 02:24:12,901: t15.2024.05.10 val PER: 0.9034 2025-09-16 02:24:12,901: t15.2024.06.14 val PER: 0.9227 2025-09-16 02:24:12,901: t15.2024.07.19 val PER: 0.9235 2025-09-16 02:24:12,901: t15.2024.07.21 val PER: 0.9062 2025-09-16 02:24:12,901: t15.2024.07.28 val PER: 0.9066 2025-09-16 02:24:12,901: t15.2025.01.10 val PER: 0.9256 2025-09-16 02:24:12,901: t15.2025.01.12 val PER: 0.9169 2025-09-16 02:24:12,901: t15.2025.03.14 val PER: 0.9231 2025-09-16 02:24:12,901: t15.2025.03.16 val PER: 0.9215 2025-09-16 02:24:12,901: t15.2025.03.30 val PER: 0.9195 2025-09-16 02:24:12,901: t15.2025.04.13 val PER: 0.9087 2025-09-16 02:24:12,901: New best test PER inf --> 0.9121 2025-09-16 02:24:12,901: Checkpointing model 2025-09-16 02:24:13,528: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 02:24:45,139: Train batch 200: loss: 84.21 grad norm: 121.90 time: 0.126 2025-09-16 02:25:15,163: Train batch 400: loss: 87.03 grad norm: 47.23 time: 0.128 2025-09-16 02:25:46,613: Train batch 600: loss: 80.02 grad norm: 22.49 time: 0.108 2025-09-16 02:26:18,148: Train batch 800: loss: 87.85 grad norm: 15.45 time: 0.095 2025-09-16 02:26:51,632: Train batch 1000: loss: 93.60 grad norm: 45.49 time: 0.162 2025-09-16 02:27:24,665: Train batch 1200: loss: 83.03 grad norm: 47.63 time: 0.120 2025-09-16 02:27:58,137: Train batch 1400: loss: 88.91 grad norm: 26.47 time: 0.136 2025-09-16 02:28:30,795: Train batch 1600: loss: 68.38 grad norm: 39.91 time: 0.116 2025-09-16 02:29:03,999: Train batch 1800: loss: 54.53 grad norm: 38.24 time: 0.127 2025-09-16 02:29:37,114: Train batch 2000: loss: 51.56 grad norm: 50.53 time: 0.114 2025-09-16 02:29:37,115: Running test after training batch: 2000 2025-09-16 02:29:47,573: Val batch 2000: PER (avg): 0.4835 CTC Loss (avg): 50.9311 time: 10.458 2025-09-16 02:29:47,574: t15.2023.08.13 val PER: 0.4543 2025-09-16 02:29:47,574: t15.2023.08.18 val PER: 0.4493 2025-09-16 02:29:47,574: t15.2023.08.20 val PER: 0.4249 2025-09-16 02:29:47,574: t15.2023.08.25 val PER: 0.4337 2025-09-16 02:29:47,574: t15.2023.08.27 val PER: 0.5531 2025-09-16 02:29:47,574: t15.2023.09.01 val PER: 0.4367 2025-09-16 02:29:47,574: t15.2023.09.03 val PER: 0.4774 2025-09-16 02:29:47,574: t15.2023.09.24 val PER: 0.4345 2025-09-16 02:29:47,574: t15.2023.09.29 val PER: 0.4576 2025-09-16 02:29:47,574: t15.2023.10.01 val PER: 0.5033 2025-09-16 02:29:47,574: t15.2023.10.06 val PER: 0.4230 2025-09-16 02:29:47,574: t15.2023.10.08 val PER: 0.5291 2025-09-16 02:29:47,574: t15.2023.10.13 val PER: 0.5656 2025-09-16 02:29:47,575: t15.2023.10.15 val PER: 0.4964 2025-09-16 02:29:47,575: t15.2023.10.20 val PER: 0.4765 2025-09-16 02:29:47,575: t15.2023.10.22 val PER: 0.4499 2025-09-16 02:29:47,575: t15.2023.11.03 val PER: 0.4837 2025-09-16 02:29:47,575: t15.2023.11.04 val PER: 0.2526 2025-09-16 02:29:47,575: t15.2023.11.17 val PER: 0.3437 2025-09-16 02:29:47,575: t15.2023.11.19 val PER: 0.3293 2025-09-16 02:29:47,575: t15.2023.11.26 val PER: 0.5384 2025-09-16 02:29:47,575: t15.2023.12.03 val PER: 0.4716 2025-09-16 02:29:47,575: t15.2023.12.08 val PER: 0.4687 2025-09-16 02:29:47,575: t15.2023.12.10 val PER: 0.4560 2025-09-16 02:29:47,575: t15.2023.12.17 val PER: 0.4938 2025-09-16 02:29:47,575: t15.2023.12.29 val PER: 0.4921 2025-09-16 02:29:47,575: t15.2024.02.25 val PER: 0.4368 2025-09-16 02:29:47,575: t15.2024.03.08 val PER: 0.5292 2025-09-16 02:29:47,575: t15.2024.03.15 val PER: 0.5059 2025-09-16 02:29:47,575: t15.2024.03.17 val PER: 0.4847 2025-09-16 02:29:47,575: t15.2024.05.10 val PER: 0.4948 2025-09-16 02:29:47,576: t15.2024.06.14 val PER: 0.4495 2025-09-16 02:29:47,576: t15.2024.07.19 val PER: 0.5603 2025-09-16 02:29:47,576: t15.2024.07.21 val PER: 0.4255 2025-09-16 02:29:47,576: t15.2024.07.28 val PER: 0.4625 2025-09-16 02:29:47,576: t15.2025.01.10 val PER: 0.5785 2025-09-16 02:29:47,576: t15.2025.01.12 val PER: 0.4942 2025-09-16 02:29:47,576: t15.2025.03.14 val PER: 0.6198 2025-09-16 02:29:47,576: t15.2025.03.16 val PER: 0.5301 2025-09-16 02:29:47,576: t15.2025.03.30 val PER: 0.5966 2025-09-16 02:29:47,576: t15.2025.04.13 val PER: 0.5250 2025-09-16 02:29:47,576: New best test PER 0.9121 --> 0.4835 2025-09-16 02:29:47,576: Checkpointing model 2025-09-16 02:29:48,957: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 02:30:17,710: Train batch 2200: loss: 32.40 grad norm: 49.07 time: 0.127 2025-09-16 02:30:51,200: Train batch 2400: loss: 39.65 grad norm: 56.14 time: 0.163 2025-09-16 02:31:24,566: Train batch 2600: loss: 34.27 grad norm: 60.27 time: 0.134 2025-09-16 02:31:58,164: Train batch 2800: loss: 21.85 grad norm: 51.96 time: 0.172 2025-09-16 02:32:30,953: Train batch 3000: loss: 26.57 grad norm: 52.86 time: 0.119 2025-09-16 02:33:03,711: Train batch 3200: loss: 21.47 grad norm: 51.75 time: 0.140 2025-09-16 02:33:36,035: Train batch 3400: loss: 20.91 grad norm: 51.96 time: 0.169 2025-09-16 02:34:09,470: Train batch 3600: loss: 16.33 grad norm: 46.02 time: 0.119 2025-09-16 02:34:43,393: Train batch 3800: loss: 14.50 grad norm: 45.01 time: 0.141 2025-09-16 02:35:16,326: Train batch 4000: loss: 13.81 grad norm: 43.23 time: 0.152 2025-09-16 02:35:16,326: Running test after training batch: 4000 2025-09-16 02:35:27,094: Val batch 4000: PER (avg): 0.2010 CTC Loss (avg): 21.8241 time: 10.767 2025-09-16 02:35:27,094: t15.2023.08.13 val PER: 0.1798 2025-09-16 02:35:27,094: t15.2023.08.18 val PER: 0.1643 2025-09-16 02:35:27,094: t15.2023.08.20 val PER: 0.1422 2025-09-16 02:35:27,094: t15.2023.08.25 val PER: 0.1822 2025-09-16 02:35:27,094: t15.2023.08.27 val PER: 0.2508 2025-09-16 02:35:27,094: t15.2023.09.01 val PER: 0.1193 2025-09-16 02:35:27,094: t15.2023.09.03 val PER: 0.1971 2025-09-16 02:35:27,095: t15.2023.09.24 val PER: 0.1505 2025-09-16 02:35:27,095: t15.2023.09.29 val PER: 0.1857 2025-09-16 02:35:27,095: t15.2023.10.01 val PER: 0.2358 2025-09-16 02:35:27,095: t15.2023.10.06 val PER: 0.1270 2025-09-16 02:35:27,095: t15.2023.10.08 val PER: 0.2963 2025-09-16 02:35:27,095: t15.2023.10.13 val PER: 0.2599 2025-09-16 02:35:27,095: t15.2023.10.15 val PER: 0.1859 2025-09-16 02:35:27,095: t15.2023.10.20 val PER: 0.2651 2025-09-16 02:35:27,095: t15.2023.10.22 val PER: 0.1871 2025-09-16 02:35:27,095: t15.2023.11.03 val PER: 0.2273 2025-09-16 02:35:27,095: t15.2023.11.04 val PER: 0.0410 2025-09-16 02:35:27,095: t15.2023.11.17 val PER: 0.0684 2025-09-16 02:35:27,095: t15.2023.11.19 val PER: 0.0639 2025-09-16 02:35:27,095: t15.2023.11.26 val PER: 0.2123 2025-09-16 02:35:27,095: t15.2023.12.03 val PER: 0.1765 2025-09-16 02:35:27,095: t15.2023.12.08 val PER: 0.1471 2025-09-16 02:35:27,095: t15.2023.12.10 val PER: 0.1340 2025-09-16 02:35:27,095: t15.2023.12.17 val PER: 0.1933 2025-09-16 02:35:27,095: t15.2023.12.29 val PER: 0.2025 2025-09-16 02:35:27,096: t15.2024.02.25 val PER: 0.1475 2025-09-16 02:35:27,096: t15.2024.03.08 val PER: 0.2646 2025-09-16 02:35:27,096: t15.2024.03.15 val PER: 0.2689 2025-09-16 02:35:27,096: t15.2024.03.17 val PER: 0.1855 2025-09-16 02:35:27,096: t15.2024.05.10 val PER: 0.2036 2025-09-16 02:35:27,096: t15.2024.06.14 val PER: 0.1845 2025-09-16 02:35:27,096: t15.2024.07.19 val PER: 0.2795 2025-09-16 02:35:27,096: t15.2024.07.21 val PER: 0.1545 2025-09-16 02:35:27,096: t15.2024.07.28 val PER: 0.1897 2025-09-16 02:35:27,096: t15.2025.01.10 val PER: 0.3402 2025-09-16 02:35:27,096: t15.2025.01.12 val PER: 0.1986 2025-09-16 02:35:27,096: t15.2025.03.14 val PER: 0.3521 2025-09-16 02:35:27,096: t15.2025.03.16 val PER: 0.2382 2025-09-16 02:35:27,096: t15.2025.03.30 val PER: 0.3057 2025-09-16 02:35:27,096: t15.2025.04.13 val PER: 0.2596 2025-09-16 02:35:27,096: New best test PER 0.4835 --> 0.2010 2025-09-16 02:35:27,096: Checkpointing model 2025-09-16 02:35:28,464: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 02:35:57,562: Train batch 4200: loss: 10.00 grad norm: 36.88 time: 0.136 2025-09-16 02:36:29,971: Train batch 4400: loss: 10.55 grad norm: 40.50 time: 0.145 2025-09-16 02:37:03,347: Train batch 4600: loss: 9.47 grad norm: 39.52 time: 0.100 2025-09-16 02:37:36,887: Train batch 4800: loss: 8.85 grad norm: 43.24 time: 0.153 2025-09-16 02:38:10,660: Train batch 5000: loss: 7.81 grad norm: 40.19 time: 0.097 2025-09-16 02:38:43,534: Train batch 5200: loss: 8.81 grad norm: 40.42 time: 0.115 2025-09-16 02:39:17,280: Train batch 5400: loss: 8.16 grad norm: 36.33 time: 0.152 2025-09-16 02:39:51,423: Train batch 5600: loss: 7.56 grad norm: 35.75 time: 0.177 2025-09-16 02:40:24,704: Train batch 5800: loss: 6.31 grad norm: 32.34 time: 0.119 2025-09-16 02:40:57,935: Train batch 6000: loss: 4.56 grad norm: 30.15 time: 0.113 2025-09-16 02:40:57,936: Running test after training batch: 6000 2025-09-16 02:41:08,559: Val batch 6000: PER (avg): 0.1604 CTC Loss (avg): 19.9005 time: 10.623 2025-09-16 02:41:08,559: t15.2023.08.13 val PER: 0.1424 2025-09-16 02:41:08,559: t15.2023.08.18 val PER: 0.1358 2025-09-16 02:41:08,559: t15.2023.08.20 val PER: 0.1001 2025-09-16 02:41:08,559: t15.2023.08.25 val PER: 0.1130 2025-09-16 02:41:08,559: t15.2023.08.27 val PER: 0.2170 2025-09-16 02:41:08,560: t15.2023.09.01 val PER: 0.0950 2025-09-16 02:41:08,560: t15.2023.09.03 val PER: 0.1758 2025-09-16 02:41:08,560: t15.2023.09.24 val PER: 0.1311 2025-09-16 02:41:08,560: t15.2023.09.29 val PER: 0.1449 2025-09-16 02:41:08,560: t15.2023.10.01 val PER: 0.2015 2025-09-16 02:41:08,560: t15.2023.10.06 val PER: 0.1023 2025-09-16 02:41:08,560: t15.2023.10.08 val PER: 0.2612 2025-09-16 02:41:08,560: t15.2023.10.13 val PER: 0.2320 2025-09-16 02:41:08,560: t15.2023.10.15 val PER: 0.1595 2025-09-16 02:41:08,560: t15.2023.10.20 val PER: 0.2282 2025-09-16 02:41:08,560: t15.2023.10.22 val PER: 0.1492 2025-09-16 02:41:08,560: t15.2023.11.03 val PER: 0.1961 2025-09-16 02:41:08,560: t15.2023.11.04 val PER: 0.0171 2025-09-16 02:41:08,560: t15.2023.11.17 val PER: 0.0373 2025-09-16 02:41:08,560: t15.2023.11.19 val PER: 0.0200 2025-09-16 02:41:08,560: t15.2023.11.26 val PER: 0.1174 2025-09-16 02:41:08,560: t15.2023.12.03 val PER: 0.0998 2025-09-16 02:41:08,560: t15.2023.12.08 val PER: 0.0859 2025-09-16 02:41:08,561: t15.2023.12.10 val PER: 0.0775 2025-09-16 02:41:08,561: t15.2023.12.17 val PER: 0.1393 2025-09-16 02:41:08,561: t15.2023.12.29 val PER: 0.1380 2025-09-16 02:41:08,561: t15.2024.02.25 val PER: 0.1250 2025-09-16 02:41:08,561: t15.2024.03.08 val PER: 0.2319 2025-09-16 02:41:08,561: t15.2024.03.15 val PER: 0.2114 2025-09-16 02:41:08,561: t15.2024.03.17 val PER: 0.1450 2025-09-16 02:41:08,561: t15.2024.05.10 val PER: 0.1694 2025-09-16 02:41:08,561: t15.2024.06.14 val PER: 0.1656 2025-09-16 02:41:08,561: t15.2024.07.19 val PER: 0.2340 2025-09-16 02:41:08,561: t15.2024.07.21 val PER: 0.0966 2025-09-16 02:41:08,561: t15.2024.07.28 val PER: 0.1338 2025-09-16 02:41:08,561: t15.2025.01.10 val PER: 0.2879 2025-09-16 02:41:08,561: t15.2025.01.12 val PER: 0.1663 2025-09-16 02:41:08,561: t15.2025.03.14 val PER: 0.3713 2025-09-16 02:41:08,561: t15.2025.03.16 val PER: 0.2068 2025-09-16 02:41:08,561: t15.2025.03.30 val PER: 0.2931 2025-09-16 02:41:08,561: t15.2025.04.13 val PER: 0.2511 2025-09-16 02:41:08,561: New best test PER 0.2010 --> 0.1604 2025-09-16 02:41:08,561: Checkpointing model 2025-09-16 02:41:09,877: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 02:41:36,842: Train batch 6200: loss: 4.26 grad norm: 31.07 time: 0.126 2025-09-16 02:42:10,138: Train batch 6400: loss: 2.94 grad norm: 23.22 time: 0.115 2025-09-16 02:42:43,092: Train batch 6600: loss: 4.79 grad norm: 30.53 time: 0.142 2025-09-16 02:43:15,977: Train batch 6800: loss: 5.68 grad norm: 34.55 time: 0.117 2025-09-16 02:43:49,463: Train batch 7000: loss: 4.95 grad norm: 37.61 time: 0.158 2025-09-16 02:44:22,489: Train batch 7200: loss: 2.23 grad norm: 22.51 time: 0.114 2025-09-16 02:44:55,991: Train batch 7400: loss: 2.57 grad norm: 27.48 time: 0.166 2025-09-16 02:45:28,825: Train batch 7600: loss: 2.64 grad norm: 23.96 time: 0.137 2025-09-16 02:46:02,732: Train batch 7800: loss: 2.39 grad norm: 23.13 time: 0.119 2025-09-16 02:46:36,240: Train batch 8000: loss: 2.71 grad norm: 26.99 time: 0.131 2025-09-16 02:46:36,240: Running test after training batch: 8000 2025-09-16 02:46:46,689: Val batch 8000: PER (avg): 0.1423 CTC Loss (avg): 19.8109 time: 10.448 2025-09-16 02:46:46,689: t15.2023.08.13 val PER: 0.1112 2025-09-16 02:46:46,689: t15.2023.08.18 val PER: 0.1098 2025-09-16 02:46:46,689: t15.2023.08.20 val PER: 0.0826 2025-09-16 02:46:46,689: t15.2023.08.25 val PER: 0.1009 2025-09-16 02:46:46,689: t15.2023.08.27 val PER: 0.2010 2025-09-16 02:46:46,689: t15.2023.09.01 val PER: 0.0609 2025-09-16 02:46:46,690: t15.2023.09.03 val PER: 0.1413 2025-09-16 02:46:46,690: t15.2023.09.24 val PER: 0.1117 2025-09-16 02:46:46,690: t15.2023.09.29 val PER: 0.1232 2025-09-16 02:46:46,690: t15.2023.10.01 val PER: 0.1744 2025-09-16 02:46:46,690: t15.2023.10.06 val PER: 0.0818 2025-09-16 02:46:46,690: t15.2023.10.08 val PER: 0.2368 2025-09-16 02:46:46,690: t15.2023.10.13 val PER: 0.1947 2025-09-16 02:46:46,690: t15.2023.10.15 val PER: 0.1470 2025-09-16 02:46:46,690: t15.2023.10.20 val PER: 0.2081 2025-09-16 02:46:46,690: t15.2023.10.22 val PER: 0.1102 2025-09-16 02:46:46,690: t15.2023.11.03 val PER: 0.1859 2025-09-16 02:46:46,690: t15.2023.11.04 val PER: 0.0068 2025-09-16 02:46:46,690: t15.2023.11.17 val PER: 0.0264 2025-09-16 02:46:46,690: t15.2023.11.19 val PER: 0.0259 2025-09-16 02:46:46,690: t15.2023.11.26 val PER: 0.0971 2025-09-16 02:46:46,690: t15.2023.12.03 val PER: 0.0777 2025-09-16 02:46:46,690: t15.2023.12.08 val PER: 0.0699 2025-09-16 02:46:46,690: t15.2023.12.10 val PER: 0.0723 2025-09-16 02:46:46,690: t15.2023.12.17 val PER: 0.1216 2025-09-16 02:46:46,691: t15.2023.12.29 val PER: 0.1229 2025-09-16 02:46:46,691: t15.2024.02.25 val PER: 0.1180 2025-09-16 02:46:46,691: t15.2024.03.08 val PER: 0.2248 2025-09-16 02:46:46,691: t15.2024.03.15 val PER: 0.1920 2025-09-16 02:46:46,691: t15.2024.03.17 val PER: 0.1283 2025-09-16 02:46:46,691: t15.2024.05.10 val PER: 0.1753 2025-09-16 02:46:46,691: t15.2024.06.14 val PER: 0.1467 2025-09-16 02:46:46,691: t15.2024.07.19 val PER: 0.2076 2025-09-16 02:46:46,691: t15.2024.07.21 val PER: 0.0910 2025-09-16 02:46:46,691: t15.2024.07.28 val PER: 0.1338 2025-09-16 02:46:46,691: t15.2025.01.10 val PER: 0.3017 2025-09-16 02:46:46,691: t15.2025.01.12 val PER: 0.1378 2025-09-16 02:46:46,691: t15.2025.03.14 val PER: 0.3536 2025-09-16 02:46:46,691: t15.2025.03.16 val PER: 0.2003 2025-09-16 02:46:46,691: t15.2025.03.30 val PER: 0.2736 2025-09-16 02:46:46,691: t15.2025.04.13 val PER: 0.2225 2025-09-16 02:46:46,691: New best test PER 0.1604 --> 0.1423 2025-09-16 02:46:46,691: Checkpointing model 2025-09-16 02:46:48,087: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 02:47:16,641: Train batch 8200: loss: 2.67 grad norm: 30.53 time: 0.175 2025-09-16 02:47:49,193: Train batch 8400: loss: 0.87 grad norm: 13.73 time: 0.099 2025-09-16 02:48:23,298: Train batch 8600: loss: 1.30 grad norm: 18.09 time: 0.113 2025-09-16 02:48:56,375: Train batch 8800: loss: 2.18 grad norm: 27.11 time: 0.151 2025-09-16 02:49:29,958: Train batch 9000: loss: 2.78 grad norm: 33.77 time: 0.162 2025-09-16 02:50:03,427: Train batch 9200: loss: 1.37 grad norm: 16.95 time: 0.107 2025-09-16 02:50:37,701: Train batch 9400: loss: 2.61 grad norm: 27.93 time: 0.135 2025-09-16 02:51:11,177: Train batch 9600: loss: 2.11 grad norm: 27.27 time: 0.146 2025-09-16 02:51:43,890: Train batch 9800: loss: 1.95 grad norm: 18.24 time: 0.119 2025-09-16 02:52:18,023: Train batch 10000: loss: 1.16 grad norm: 18.52 time: 0.155 2025-09-16 02:52:18,023: Running test after training batch: 10000 2025-09-16 02:52:28,737: Val batch 10000: PER (avg): 0.1379 CTC Loss (avg): 22.1460 time: 10.714 2025-09-16 02:52:28,738: t15.2023.08.13 val PER: 0.1071 2025-09-16 02:52:28,738: t15.2023.08.18 val PER: 0.0972 2025-09-16 02:52:28,738: t15.2023.08.20 val PER: 0.0707 2025-09-16 02:52:28,738: t15.2023.08.25 val PER: 0.1114 2025-09-16 02:52:28,738: t15.2023.08.27 val PER: 0.2090 2025-09-16 02:52:28,738: t15.2023.09.01 val PER: 0.0625 2025-09-16 02:52:28,738: t15.2023.09.03 val PER: 0.1425 2025-09-16 02:52:28,738: t15.2023.09.24 val PER: 0.1092 2025-09-16 02:52:28,738: t15.2023.09.29 val PER: 0.1295 2025-09-16 02:52:28,738: t15.2023.10.01 val PER: 0.1704 2025-09-16 02:52:28,738: t15.2023.10.06 val PER: 0.0883 2025-09-16 02:52:28,738: t15.2023.10.08 val PER: 0.2300 2025-09-16 02:52:28,738: t15.2023.10.13 val PER: 0.1994 2025-09-16 02:52:28,738: t15.2023.10.15 val PER: 0.1292 2025-09-16 02:52:28,738: t15.2023.10.20 val PER: 0.2047 2025-09-16 02:52:28,738: t15.2023.10.22 val PER: 0.1336 2025-09-16 02:52:28,738: t15.2023.11.03 val PER: 0.1893 2025-09-16 02:52:28,738: t15.2023.11.04 val PER: 0.0068 2025-09-16 02:52:28,739: t15.2023.11.17 val PER: 0.0435 2025-09-16 02:52:28,739: t15.2023.11.19 val PER: 0.0240 2025-09-16 02:52:28,739: t15.2023.11.26 val PER: 0.0928 2025-09-16 02:52:28,739: t15.2023.12.03 val PER: 0.0851 2025-09-16 02:52:28,739: t15.2023.12.08 val PER: 0.0579 2025-09-16 02:52:28,739: t15.2023.12.10 val PER: 0.0578 2025-09-16 02:52:28,739: t15.2023.12.17 val PER: 0.1299 2025-09-16 02:52:28,739: t15.2023.12.29 val PER: 0.1126 2025-09-16 02:52:28,739: t15.2024.02.25 val PER: 0.0969 2025-09-16 02:52:28,739: t15.2024.03.08 val PER: 0.2176 2025-09-16 02:52:28,739: t15.2024.03.15 val PER: 0.1857 2025-09-16 02:52:28,739: t15.2024.03.17 val PER: 0.1039 2025-09-16 02:52:28,739: t15.2024.05.10 val PER: 0.1813 2025-09-16 02:52:28,739: t15.2024.06.14 val PER: 0.1483 2025-09-16 02:52:28,739: t15.2024.07.19 val PER: 0.2017 2025-09-16 02:52:28,739: t15.2024.07.21 val PER: 0.0800 2025-09-16 02:52:28,739: t15.2024.07.28 val PER: 0.1250 2025-09-16 02:52:28,739: t15.2025.01.10 val PER: 0.2961 2025-09-16 02:52:28,739: t15.2025.01.12 val PER: 0.1263 2025-09-16 02:52:28,740: t15.2025.03.14 val PER: 0.3254 2025-09-16 02:52:28,740: t15.2025.03.16 val PER: 0.1728 2025-09-16 02:52:28,740: t15.2025.03.30 val PER: 0.2667 2025-09-16 02:52:28,740: t15.2025.04.13 val PER: 0.2439 2025-09-16 02:52:28,740: New best test PER 0.1423 --> 0.1379 2025-09-16 02:52:28,740: Checkpointing model 2025-09-16 02:52:30,063: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 02:52:58,224: Train batch 10200: loss: 2.73 grad norm: 26.35 time: 0.135 2025-09-16 02:53:30,938: Train batch 10400: loss: 2.50 grad norm: 28.31 time: 0.163 2025-09-16 02:54:04,242: Train batch 10600: loss: 0.57 grad norm: 11.84 time: 0.124 2025-09-16 02:54:37,463: Train batch 10800: loss: 2.50 grad norm: 31.20 time: 0.113 2025-09-16 02:55:10,196: Train batch 11000: loss: 1.65 grad norm: 21.57 time: 0.164 2025-09-16 02:55:43,500: Train batch 11200: loss: 0.72 grad norm: 15.23 time: 0.135 2025-09-16 02:56:17,133: Train batch 11400: loss: 0.52 grad norm: 10.35 time: 0.099 2025-09-16 02:56:49,879: Train batch 11600: loss: 1.88 grad norm: 25.86 time: 0.116 2025-09-16 02:57:23,170: Train batch 11800: loss: 0.81 grad norm: 16.85 time: 0.126 2025-09-16 02:57:56,792: Train batch 12000: loss: 0.93 grad norm: 16.24 time: 0.134 2025-09-16 02:57:56,792: Running test after training batch: 12000 2025-09-16 02:58:07,685: Val batch 12000: PER (avg): 0.1332 CTC Loss (avg): 22.9958 time: 10.893 2025-09-16 02:58:07,686: t15.2023.08.13 val PER: 0.1123 2025-09-16 02:58:07,686: t15.2023.08.18 val PER: 0.0956 2025-09-16 02:58:07,686: t15.2023.08.20 val PER: 0.0707 2025-09-16 02:58:07,686: t15.2023.08.25 val PER: 0.0934 2025-09-16 02:58:07,686: t15.2023.08.27 val PER: 0.1913 2025-09-16 02:58:07,686: t15.2023.09.01 val PER: 0.0625 2025-09-16 02:58:07,686: t15.2023.09.03 val PER: 0.1544 2025-09-16 02:58:07,686: t15.2023.09.24 val PER: 0.1177 2025-09-16 02:58:07,686: t15.2023.09.29 val PER: 0.1168 2025-09-16 02:58:07,686: t15.2023.10.01 val PER: 0.1757 2025-09-16 02:58:07,686: t15.2023.10.06 val PER: 0.0840 2025-09-16 02:58:07,686: t15.2023.10.08 val PER: 0.2300 2025-09-16 02:58:07,686: t15.2023.10.13 val PER: 0.1877 2025-09-16 02:58:07,686: t15.2023.10.15 val PER: 0.1246 2025-09-16 02:58:07,686: t15.2023.10.20 val PER: 0.1946 2025-09-16 02:58:07,686: t15.2023.10.22 val PER: 0.1325 2025-09-16 02:58:07,687: t15.2023.11.03 val PER: 0.1845 2025-09-16 02:58:07,687: t15.2023.11.04 val PER: 0.0102 2025-09-16 02:58:07,687: t15.2023.11.17 val PER: 0.0404 2025-09-16 02:58:07,687: t15.2023.11.19 val PER: 0.0160 2025-09-16 02:58:07,687: t15.2023.11.26 val PER: 0.0783 2025-09-16 02:58:07,687: t15.2023.12.03 val PER: 0.0725 2025-09-16 02:58:07,687: t15.2023.12.08 val PER: 0.0726 2025-09-16 02:58:07,687: t15.2023.12.10 val PER: 0.0591 2025-09-16 02:58:07,687: t15.2023.12.17 val PER: 0.1237 2025-09-16 02:58:07,687: t15.2023.12.29 val PER: 0.1105 2025-09-16 02:58:07,687: t15.2024.02.25 val PER: 0.1039 2025-09-16 02:58:07,687: t15.2024.03.08 val PER: 0.2134 2025-09-16 02:58:07,687: t15.2024.03.15 val PER: 0.1801 2025-09-16 02:58:07,687: t15.2024.03.17 val PER: 0.1088 2025-09-16 02:58:07,687: t15.2024.05.10 val PER: 0.1501 2025-09-16 02:58:07,687: t15.2024.06.14 val PER: 0.1498 2025-09-16 02:58:07,687: t15.2024.07.19 val PER: 0.1978 2025-09-16 02:58:07,687: t15.2024.07.21 val PER: 0.0738 2025-09-16 02:58:07,687: t15.2024.07.28 val PER: 0.1044 2025-09-16 02:58:07,688: t15.2025.01.10 val PER: 0.2769 2025-09-16 02:58:07,688: t15.2025.01.12 val PER: 0.1178 2025-09-16 02:58:07,688: t15.2025.03.14 val PER: 0.3254 2025-09-16 02:58:07,688: t15.2025.03.16 val PER: 0.1636 2025-09-16 02:58:07,688: t15.2025.03.30 val PER: 0.2552 2025-09-16 02:58:07,688: t15.2025.04.13 val PER: 0.2282 2025-09-16 02:58:07,688: New best test PER 0.1379 --> 0.1332 2025-09-16 02:58:07,688: Checkpointing model 2025-09-16 02:58:08,982: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 02:58:36,691: Train batch 12200: loss: 1.00 grad norm: 16.95 time: 0.130 2025-09-16 02:59:08,481: Train batch 12400: loss: 0.91 grad norm: 16.22 time: 0.130 2025-09-16 02:59:41,333: Train batch 12600: loss: 1.55 grad norm: 27.20 time: 0.109 2025-09-16 03:00:14,311: Train batch 12800: loss: 0.52 grad norm: 11.60 time: 0.125 2025-09-16 03:00:47,421: Train batch 13000: loss: 0.79 grad norm: 16.80 time: 0.150 2025-09-16 03:01:20,627: Train batch 13200: loss: 1.03 grad norm: 20.33 time: 0.168 2025-09-16 03:01:53,720: Train batch 13400: loss: 1.37 grad norm: 14.15 time: 0.123 2025-09-16 03:02:26,438: Train batch 13600: loss: 0.45 grad norm: 10.06 time: 0.128 2025-09-16 03:02:59,072: Train batch 13800: loss: 0.72 grad norm: 15.72 time: 0.162 2025-09-16 03:03:31,322: Train batch 14000: loss: 0.61 grad norm: 23.08 time: 0.154 2025-09-16 03:03:31,322: Running test after training batch: 14000 2025-09-16 03:03:41,802: Val batch 14000: PER (avg): 0.1331 CTC Loss (avg): 23.8213 time: 10.480 2025-09-16 03:03:41,802: t15.2023.08.13 val PER: 0.1040 2025-09-16 03:03:41,802: t15.2023.08.18 val PER: 0.1023 2025-09-16 03:03:41,803: t15.2023.08.20 val PER: 0.0794 2025-09-16 03:03:41,803: t15.2023.08.25 val PER: 0.1084 2025-09-16 03:03:41,803: t15.2023.08.27 val PER: 0.1945 2025-09-16 03:03:41,803: t15.2023.09.01 val PER: 0.0698 2025-09-16 03:03:41,803: t15.2023.09.03 val PER: 0.1568 2025-09-16 03:03:41,803: t15.2023.09.24 val PER: 0.1262 2025-09-16 03:03:41,803: t15.2023.09.29 val PER: 0.1174 2025-09-16 03:03:41,803: t15.2023.10.01 val PER: 0.1678 2025-09-16 03:03:41,803: t15.2023.10.06 val PER: 0.0753 2025-09-16 03:03:41,803: t15.2023.10.08 val PER: 0.2219 2025-09-16 03:03:41,803: t15.2023.10.13 val PER: 0.1963 2025-09-16 03:03:41,803: t15.2023.10.15 val PER: 0.1444 2025-09-16 03:03:41,803: t15.2023.10.20 val PER: 0.1846 2025-09-16 03:03:41,803: t15.2023.10.22 val PER: 0.1169 2025-09-16 03:03:41,803: t15.2023.11.03 val PER: 0.1757 2025-09-16 03:03:41,803: t15.2023.11.04 val PER: 0.0137 2025-09-16 03:03:41,803: t15.2023.11.17 val PER: 0.0327 2025-09-16 03:03:41,803: t15.2023.11.19 val PER: 0.0180 2025-09-16 03:03:41,803: t15.2023.11.26 val PER: 0.0804 2025-09-16 03:03:41,804: t15.2023.12.03 val PER: 0.0683 2025-09-16 03:03:41,804: t15.2023.12.08 val PER: 0.0613 2025-09-16 03:03:41,804: t15.2023.12.10 val PER: 0.0460 2025-09-16 03:03:41,804: t15.2023.12.17 val PER: 0.1123 2025-09-16 03:03:41,804: t15.2023.12.29 val PER: 0.1181 2025-09-16 03:03:41,804: t15.2024.02.25 val PER: 0.0857 2025-09-16 03:03:41,804: t15.2024.03.08 val PER: 0.2048 2025-09-16 03:03:41,804: t15.2024.03.15 val PER: 0.1832 2025-09-16 03:03:41,804: t15.2024.03.17 val PER: 0.1123 2025-09-16 03:03:41,804: t15.2024.05.10 val PER: 0.1352 2025-09-16 03:03:41,804: t15.2024.06.14 val PER: 0.1467 2025-09-16 03:03:41,804: t15.2024.07.19 val PER: 0.1991 2025-09-16 03:03:41,804: t15.2024.07.21 val PER: 0.0821 2025-09-16 03:03:41,804: t15.2024.07.28 val PER: 0.1051 2025-09-16 03:03:41,804: t15.2025.01.10 val PER: 0.2700 2025-09-16 03:03:41,804: t15.2025.01.12 val PER: 0.1309 2025-09-16 03:03:41,804: t15.2025.03.14 val PER: 0.2988 2025-09-16 03:03:41,804: t15.2025.03.16 val PER: 0.1597 2025-09-16 03:03:41,804: t15.2025.03.30 val PER: 0.2552 2025-09-16 03:03:41,804: t15.2025.04.13 val PER: 0.2496 2025-09-16 03:03:41,805: New best test PER 0.1332 --> 0.1331 2025-09-16 03:03:41,805: Checkpointing model 2025-09-16 03:03:43,155: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 03:04:11,469: Train batch 14200: loss: 0.88 grad norm: 15.37 time: 0.111 2025-09-16 03:04:43,961: Train batch 14400: loss: 0.51 grad norm: 9.42 time: 0.145 2025-09-16 03:05:16,381: Train batch 14600: loss: 0.98 grad norm: 19.27 time: 0.120 2025-09-16 03:05:49,165: Train batch 14800: loss: 0.32 grad norm: 8.67 time: 0.103 2025-09-16 03:06:22,409: Train batch 15000: loss: 0.49 grad norm: 16.72 time: 0.141 2025-09-16 03:06:54,388: Train batch 15200: loss: 0.24 grad norm: 8.02 time: 0.154 2025-09-16 03:07:27,046: Train batch 15400: loss: 1.17 grad norm: 21.40 time: 0.118 2025-09-16 03:08:00,181: Train batch 15600: loss: 0.87 grad norm: 15.39 time: 0.131 2025-09-16 03:08:33,681: Train batch 15800: loss: 0.34 grad norm: 11.75 time: 0.113 2025-09-16 03:09:06,774: Train batch 16000: loss: 0.36 grad norm: 17.86 time: 0.151 2025-09-16 03:09:06,775: Running test after training batch: 16000 2025-09-16 03:09:17,263: Val batch 16000: PER (avg): 0.1261 CTC Loss (avg): 23.8077 time: 10.488 2025-09-16 03:09:17,263: t15.2023.08.13 val PER: 0.0977 2025-09-16 03:09:17,264: t15.2023.08.18 val PER: 0.0872 2025-09-16 03:09:17,264: t15.2023.08.20 val PER: 0.0627 2025-09-16 03:09:17,264: t15.2023.08.25 val PER: 0.0889 2025-09-16 03:09:17,264: t15.2023.08.27 val PER: 0.1833 2025-09-16 03:09:17,264: t15.2023.09.01 val PER: 0.0641 2025-09-16 03:09:17,264: t15.2023.09.03 val PER: 0.1354 2025-09-16 03:09:17,264: t15.2023.09.24 val PER: 0.1189 2025-09-16 03:09:17,264: t15.2023.09.29 val PER: 0.1130 2025-09-16 03:09:17,264: t15.2023.10.01 val PER: 0.1592 2025-09-16 03:09:17,264: t15.2023.10.06 val PER: 0.0753 2025-09-16 03:09:17,264: t15.2023.10.08 val PER: 0.2341 2025-09-16 03:09:17,264: t15.2023.10.13 val PER: 0.1746 2025-09-16 03:09:17,264: t15.2023.10.15 val PER: 0.1292 2025-09-16 03:09:17,264: t15.2023.10.20 val PER: 0.1779 2025-09-16 03:09:17,264: t15.2023.10.22 val PER: 0.1214 2025-09-16 03:09:17,264: t15.2023.11.03 val PER: 0.1771 2025-09-16 03:09:17,264: t15.2023.11.04 val PER: 0.0068 2025-09-16 03:09:17,264: t15.2023.11.17 val PER: 0.0280 2025-09-16 03:09:17,264: t15.2023.11.19 val PER: 0.0140 2025-09-16 03:09:17,265: t15.2023.11.26 val PER: 0.0775 2025-09-16 03:09:17,265: t15.2023.12.03 val PER: 0.0693 2025-09-16 03:09:17,265: t15.2023.12.08 val PER: 0.0526 2025-09-16 03:09:17,265: t15.2023.12.10 val PER: 0.0539 2025-09-16 03:09:17,265: t15.2023.12.17 val PER: 0.0884 2025-09-16 03:09:17,265: t15.2023.12.29 val PER: 0.1030 2025-09-16 03:09:17,265: t15.2024.02.25 val PER: 0.1110 2025-09-16 03:09:17,265: t15.2024.03.08 val PER: 0.2034 2025-09-16 03:09:17,265: t15.2024.03.15 val PER: 0.1707 2025-09-16 03:09:17,265: t15.2024.03.17 val PER: 0.0900 2025-09-16 03:09:17,265: t15.2024.05.10 val PER: 0.1471 2025-09-16 03:09:17,265: t15.2024.06.14 val PER: 0.1325 2025-09-16 03:09:17,265: t15.2024.07.19 val PER: 0.1991 2025-09-16 03:09:17,265: t15.2024.07.21 val PER: 0.0759 2025-09-16 03:09:17,265: t15.2024.07.28 val PER: 0.1140 2025-09-16 03:09:17,265: t15.2025.01.10 val PER: 0.2686 2025-09-16 03:09:17,265: t15.2025.01.12 val PER: 0.1155 2025-09-16 03:09:17,265: t15.2025.03.14 val PER: 0.3077 2025-09-16 03:09:17,265: t15.2025.03.16 val PER: 0.1492 2025-09-16 03:09:17,266: t15.2025.03.30 val PER: 0.2644 2025-09-16 03:09:17,266: t15.2025.04.13 val PER: 0.2126 2025-09-16 03:09:17,266: New best test PER 0.1331 --> 0.1261 2025-09-16 03:09:17,266: Checkpointing model 2025-09-16 03:09:18,551: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 03:09:46,943: Train batch 16200: loss: 0.40 grad norm: 9.83 time: 0.095 2025-09-16 03:10:20,191: Train batch 16400: loss: 0.34 grad norm: 10.72 time: 0.130 2025-09-16 03:10:52,461: Train batch 16600: loss: 0.50 grad norm: 13.84 time: 0.141 2025-09-16 03:11:25,324: Train batch 16800: loss: 0.20 grad norm: 7.68 time: 0.139 2025-09-16 03:11:57,679: Train batch 17000: loss: 0.06 grad norm: 2.99 time: 0.119 2025-09-16 03:12:30,250: Train batch 17200: loss: 0.49 grad norm: 15.90 time: 0.163 2025-09-16 03:13:02,884: Train batch 17400: loss: 0.54 grad norm: 32.56 time: 0.115 2025-09-16 03:13:35,625: Train batch 17600: loss: 0.44 grad norm: 10.50 time: 0.127 2025-09-16 03:14:08,411: Train batch 17800: loss: 0.29 grad norm: 13.59 time: 0.107 2025-09-16 03:14:41,504: Train batch 18000: loss: 0.31 grad norm: 10.83 time: 0.113 2025-09-16 03:14:41,505: Running test after training batch: 18000 2025-09-16 03:14:51,864: Val batch 18000: PER (avg): 0.1268 CTC Loss (avg): 24.8535 time: 10.359 2025-09-16 03:14:51,864: t15.2023.08.13 val PER: 0.0988 2025-09-16 03:14:51,864: t15.2023.08.18 val PER: 0.0964 2025-09-16 03:14:51,864: t15.2023.08.20 val PER: 0.0627 2025-09-16 03:14:51,864: t15.2023.08.25 val PER: 0.0964 2025-09-16 03:14:51,864: t15.2023.08.27 val PER: 0.1961 2025-09-16 03:14:51,864: t15.2023.09.01 val PER: 0.0601 2025-09-16 03:14:51,865: t15.2023.09.03 val PER: 0.1342 2025-09-16 03:14:51,865: t15.2023.09.24 val PER: 0.1056 2025-09-16 03:14:51,865: t15.2023.09.29 val PER: 0.1200 2025-09-16 03:14:51,865: t15.2023.10.01 val PER: 0.1678 2025-09-16 03:14:51,865: t15.2023.10.06 val PER: 0.0678 2025-09-16 03:14:51,865: t15.2023.10.08 val PER: 0.2124 2025-09-16 03:14:51,865: t15.2023.10.13 val PER: 0.1823 2025-09-16 03:14:51,865: t15.2023.10.15 val PER: 0.1312 2025-09-16 03:14:51,865: t15.2023.10.20 val PER: 0.2181 2025-09-16 03:14:51,865: t15.2023.10.22 val PER: 0.1125 2025-09-16 03:14:51,865: t15.2023.11.03 val PER: 0.1710 2025-09-16 03:14:51,865: t15.2023.11.04 val PER: 0.0068 2025-09-16 03:14:51,865: t15.2023.11.17 val PER: 0.0264 2025-09-16 03:14:51,865: t15.2023.11.19 val PER: 0.0120 2025-09-16 03:14:51,865: t15.2023.11.26 val PER: 0.0623 2025-09-16 03:14:51,865: t15.2023.12.03 val PER: 0.0767 2025-09-16 03:14:51,865: t15.2023.12.08 val PER: 0.0539 2025-09-16 03:14:51,865: t15.2023.12.10 val PER: 0.0512 2025-09-16 03:14:51,866: t15.2023.12.17 val PER: 0.1247 2025-09-16 03:14:51,866: t15.2023.12.29 val PER: 0.1187 2025-09-16 03:14:51,866: t15.2024.02.25 val PER: 0.0871 2025-09-16 03:14:51,866: t15.2024.03.08 val PER: 0.1835 2025-09-16 03:14:51,866: t15.2024.03.15 val PER: 0.1676 2025-09-16 03:14:51,866: t15.2024.03.17 val PER: 0.0948 2025-09-16 03:14:51,866: t15.2024.05.10 val PER: 0.1486 2025-09-16 03:14:51,866: t15.2024.06.14 val PER: 0.1530 2025-09-16 03:14:51,866: t15.2024.07.19 val PER: 0.1964 2025-09-16 03:14:51,866: t15.2024.07.21 val PER: 0.0703 2025-09-16 03:14:51,866: t15.2024.07.28 val PER: 0.1037 2025-09-16 03:14:51,866: t15.2025.01.10 val PER: 0.2851 2025-09-16 03:14:51,866: t15.2025.01.12 val PER: 0.1101 2025-09-16 03:14:51,866: t15.2025.03.14 val PER: 0.2855 2025-09-16 03:14:51,866: t15.2025.03.16 val PER: 0.1728 2025-09-16 03:14:51,866: t15.2025.03.30 val PER: 0.2644 2025-09-16 03:14:51,866: t15.2025.04.13 val PER: 0.2168 2025-09-16 03:15:20,058: Train batch 18200: loss: 0.39 grad norm: 13.96 time: 0.119 2025-09-16 03:15:51,791: Train batch 18400: loss: 0.49 grad norm: 14.26 time: 0.126 2025-09-16 03:16:24,593: Train batch 18600: loss: 0.42 grad norm: 14.32 time: 0.164 2025-09-16 03:16:57,415: Train batch 18800: loss: 0.33 grad norm: 12.03 time: 0.148 2025-09-16 03:17:31,202: Train batch 19000: loss: 0.77 grad norm: 22.08 time: 0.150 2025-09-16 03:18:04,265: Train batch 19200: loss: 0.45 grad norm: 10.92 time: 0.146 2025-09-16 03:18:38,091: Train batch 19400: loss: 0.61 grad norm: 14.74 time: 0.172 2025-09-16 03:19:11,774: Train batch 19600: loss: 0.35 grad norm: 9.60 time: 0.116 2025-09-16 03:19:45,181: Train batch 19800: loss: 0.22 grad norm: 7.19 time: 0.177 2025-09-16 03:20:18,395: Train batch 20000: loss: 0.49 grad norm: 9.73 time: 0.168 2025-09-16 03:20:18,396: Running test after training batch: 20000 2025-09-16 03:20:28,925: Val batch 20000: PER (avg): 0.1253 CTC Loss (avg): 26.3998 time: 10.529 2025-09-16 03:20:28,925: t15.2023.08.13 val PER: 0.1050 2025-09-16 03:20:28,925: t15.2023.08.18 val PER: 0.0964 2025-09-16 03:20:28,925: t15.2023.08.20 val PER: 0.0691 2025-09-16 03:20:28,925: t15.2023.08.25 val PER: 0.1009 2025-09-16 03:20:28,925: t15.2023.08.27 val PER: 0.1913 2025-09-16 03:20:28,925: t15.2023.09.01 val PER: 0.0560 2025-09-16 03:20:28,925: t15.2023.09.03 val PER: 0.1413 2025-09-16 03:20:28,926: t15.2023.09.24 val PER: 0.1153 2025-09-16 03:20:28,926: t15.2023.09.29 val PER: 0.1238 2025-09-16 03:20:28,926: t15.2023.10.01 val PER: 0.1539 2025-09-16 03:20:28,926: t15.2023.10.06 val PER: 0.0678 2025-09-16 03:20:28,926: t15.2023.10.08 val PER: 0.2287 2025-09-16 03:20:28,926: t15.2023.10.13 val PER: 0.1746 2025-09-16 03:20:28,926: t15.2023.10.15 val PER: 0.1213 2025-09-16 03:20:28,926: t15.2023.10.20 val PER: 0.1644 2025-09-16 03:20:28,926: t15.2023.10.22 val PER: 0.1058 2025-09-16 03:20:28,926: t15.2023.11.03 val PER: 0.1750 2025-09-16 03:20:28,926: t15.2023.11.04 val PER: 0.0137 2025-09-16 03:20:28,926: t15.2023.11.17 val PER: 0.0264 2025-09-16 03:20:28,926: t15.2023.11.19 val PER: 0.0140 2025-09-16 03:20:28,926: t15.2023.11.26 val PER: 0.0681 2025-09-16 03:20:28,926: t15.2023.12.03 val PER: 0.0725 2025-09-16 03:20:28,926: t15.2023.12.08 val PER: 0.0546 2025-09-16 03:20:28,926: t15.2023.12.10 val PER: 0.0696 2025-09-16 03:20:28,926: t15.2023.12.17 val PER: 0.0956 2025-09-16 03:20:28,926: t15.2023.12.29 val PER: 0.1030 2025-09-16 03:20:28,927: t15.2024.02.25 val PER: 0.1039 2025-09-16 03:20:28,927: t15.2024.03.08 val PER: 0.1821 2025-09-16 03:20:28,927: t15.2024.03.15 val PER: 0.1770 2025-09-16 03:20:28,927: t15.2024.03.17 val PER: 0.0886 2025-09-16 03:20:28,927: t15.2024.05.10 val PER: 0.1367 2025-09-16 03:20:28,927: t15.2024.06.14 val PER: 0.1467 2025-09-16 03:20:28,927: t15.2024.07.19 val PER: 0.1839 2025-09-16 03:20:28,927: t15.2024.07.21 val PER: 0.0703 2025-09-16 03:20:28,927: t15.2024.07.28 val PER: 0.1066 2025-09-16 03:20:28,927: t15.2025.01.10 val PER: 0.2466 2025-09-16 03:20:28,927: t15.2025.01.12 val PER: 0.1078 2025-09-16 03:20:28,927: t15.2025.03.14 val PER: 0.3225 2025-09-16 03:20:28,927: t15.2025.03.16 val PER: 0.1649 2025-09-16 03:20:28,927: t15.2025.03.30 val PER: 0.2598 2025-09-16 03:20:28,927: t15.2025.04.13 val PER: 0.2354 2025-09-16 03:20:28,927: New best test PER 0.1261 --> 0.1253 2025-09-16 03:20:28,927: Checkpointing model 2025-09-16 03:20:30,317: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 03:20:58,352: Train batch 20200: loss: 0.37 grad norm: 12.25 time: 0.124 2025-09-16 03:21:30,244: Train batch 20400: loss: 0.21 grad norm: 7.34 time: 0.114 2025-09-16 03:22:01,205: Train batch 20600: loss: 0.13 grad norm: 6.85 time: 0.124 2025-09-16 03:22:32,788: Train batch 20800: loss: 0.43 grad norm: 12.57 time: 0.109 2025-09-16 03:23:03,902: Train batch 21000: loss: 0.12 grad norm: 4.53 time: 0.116 2025-09-16 03:23:35,860: Train batch 21200: loss: 0.23 grad norm: 10.60 time: 0.114 2025-09-16 03:24:07,811: Train batch 21400: loss: 0.44 grad norm: 14.16 time: 0.126 2025-09-16 03:24:40,169: Train batch 21600: loss: 0.29 grad norm: 8.04 time: 0.109 2025-09-16 03:25:13,648: Train batch 21800: loss: 0.19 grad norm: 10.74 time: 0.173 2025-09-16 03:25:47,333: Train batch 22000: loss: 0.67 grad norm: 16.24 time: 0.099 2025-09-16 03:25:47,333: Running test after training batch: 22000 2025-09-16 03:25:58,052: Val batch 22000: PER (avg): 0.1253 CTC Loss (avg): 26.0540 time: 10.718 2025-09-16 03:25:58,052: t15.2023.08.13 val PER: 0.0977 2025-09-16 03:25:58,052: t15.2023.08.18 val PER: 0.0939 2025-09-16 03:25:58,052: t15.2023.08.20 val PER: 0.0763 2025-09-16 03:25:58,052: t15.2023.08.25 val PER: 0.0889 2025-09-16 03:25:58,052: t15.2023.08.27 val PER: 0.1849 2025-09-16 03:25:58,052: t15.2023.09.01 val PER: 0.0528 2025-09-16 03:25:58,052: t15.2023.09.03 val PER: 0.1473 2025-09-16 03:25:58,052: t15.2023.09.24 val PER: 0.0995 2025-09-16 03:25:58,053: t15.2023.09.29 val PER: 0.1193 2025-09-16 03:25:58,053: t15.2023.10.01 val PER: 0.1565 2025-09-16 03:25:58,053: t15.2023.10.06 val PER: 0.0721 2025-09-16 03:25:58,053: t15.2023.10.08 val PER: 0.2003 2025-09-16 03:25:58,053: t15.2023.10.13 val PER: 0.1777 2025-09-16 03:25:58,053: t15.2023.10.15 val PER: 0.1279 2025-09-16 03:25:58,053: t15.2023.10.20 val PER: 0.1879 2025-09-16 03:25:58,053: t15.2023.10.22 val PER: 0.1269 2025-09-16 03:25:58,054: t15.2023.11.03 val PER: 0.1811 2025-09-16 03:25:58,054: t15.2023.11.04 val PER: 0.0068 2025-09-16 03:25:58,054: t15.2023.11.17 val PER: 0.0249 2025-09-16 03:25:58,054: t15.2023.11.19 val PER: 0.0180 2025-09-16 03:25:58,054: t15.2023.11.26 val PER: 0.0659 2025-09-16 03:25:58,054: t15.2023.12.03 val PER: 0.0788 2025-09-16 03:25:58,054: t15.2023.12.08 val PER: 0.0566 2025-09-16 03:25:58,054: t15.2023.12.10 val PER: 0.0539 2025-09-16 03:25:58,054: t15.2023.12.17 val PER: 0.1112 2025-09-16 03:25:58,054: t15.2023.12.29 val PER: 0.0961 2025-09-16 03:25:58,054: t15.2024.02.25 val PER: 0.0969 2025-09-16 03:25:58,054: t15.2024.03.08 val PER: 0.2077 2025-09-16 03:25:58,054: t15.2024.03.15 val PER: 0.1689 2025-09-16 03:25:58,054: t15.2024.03.17 val PER: 0.0948 2025-09-16 03:25:58,054: t15.2024.05.10 val PER: 0.1501 2025-09-16 03:25:58,054: t15.2024.06.14 val PER: 0.1420 2025-09-16 03:25:58,054: t15.2024.07.19 val PER: 0.1833 2025-09-16 03:25:58,054: t15.2024.07.21 val PER: 0.0697 2025-09-16 03:25:58,054: t15.2024.07.28 val PER: 0.1059 2025-09-16 03:25:58,055: t15.2025.01.10 val PER: 0.2658 2025-09-16 03:25:58,055: t15.2025.01.12 val PER: 0.1024 2025-09-16 03:25:58,055: t15.2025.03.14 val PER: 0.2855 2025-09-16 03:25:58,055: t15.2025.03.16 val PER: 0.1702 2025-09-16 03:25:58,055: t15.2025.03.30 val PER: 0.2793 2025-09-16 03:25:58,055: t15.2025.04.13 val PER: 0.2083 2025-09-16 03:25:58,055: New best test PER 0.1253 --> 0.1253 2025-09-16 03:25:58,055: Checkpointing model 2025-09-16 03:25:59,341: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 03:26:26,463: Train batch 22200: loss: 0.38 grad norm: 11.27 time: 0.113 2025-09-16 03:26:59,500: Train batch 22400: loss: 0.43 grad norm: 12.51 time: 0.113 2025-09-16 03:27:32,688: Train batch 22600: loss: 0.31 grad norm: 10.77 time: 0.174 2025-09-16 03:28:05,430: Train batch 22800: loss: 0.13 grad norm: 4.99 time: 0.176 2025-09-16 03:28:38,895: Train batch 23000: loss: 0.32 grad norm: 7.57 time: 0.147 2025-09-16 03:29:11,761: Train batch 23200: loss: 0.37 grad norm: 10.75 time: 0.099 2025-09-16 03:29:44,873: Train batch 23400: loss: 0.19 grad norm: 12.17 time: 0.115 2025-09-16 03:30:18,356: Train batch 23600: loss: 0.71 grad norm: 25.05 time: 0.135 2025-09-16 03:30:51,013: Train batch 23800: loss: 0.27 grad norm: 6.38 time: 0.107 2025-09-16 03:31:24,068: Train batch 24000: loss: 0.13 grad norm: 8.31 time: 0.115 2025-09-16 03:31:24,068: Running test after training batch: 24000 2025-09-16 03:31:34,563: Val batch 24000: PER (avg): 0.1241 CTC Loss (avg): 26.4658 time: 10.495 2025-09-16 03:31:34,564: t15.2023.08.13 val PER: 0.0915 2025-09-16 03:31:34,564: t15.2023.08.18 val PER: 0.0788 2025-09-16 03:31:34,564: t15.2023.08.20 val PER: 0.0707 2025-09-16 03:31:34,564: t15.2023.08.25 val PER: 0.0783 2025-09-16 03:31:34,564: t15.2023.08.27 val PER: 0.1929 2025-09-16 03:31:34,564: t15.2023.09.01 val PER: 0.0568 2025-09-16 03:31:34,564: t15.2023.09.03 val PER: 0.1366 2025-09-16 03:31:34,564: t15.2023.09.24 val PER: 0.1056 2025-09-16 03:31:34,564: t15.2023.09.29 val PER: 0.1155 2025-09-16 03:31:34,564: t15.2023.10.01 val PER: 0.1513 2025-09-16 03:31:34,564: t15.2023.10.06 val PER: 0.0721 2025-09-16 03:31:34,564: t15.2023.10.08 val PER: 0.1976 2025-09-16 03:31:34,564: t15.2023.10.13 val PER: 0.1823 2025-09-16 03:31:34,564: t15.2023.10.15 val PER: 0.1272 2025-09-16 03:31:34,565: t15.2023.10.20 val PER: 0.1678 2025-09-16 03:31:34,565: t15.2023.10.22 val PER: 0.1114 2025-09-16 03:31:34,565: t15.2023.11.03 val PER: 0.1791 2025-09-16 03:31:34,565: t15.2023.11.04 val PER: 0.0068 2025-09-16 03:31:34,565: t15.2023.11.17 val PER: 0.0389 2025-09-16 03:31:34,565: t15.2023.11.19 val PER: 0.0140 2025-09-16 03:31:34,565: t15.2023.11.26 val PER: 0.0623 2025-09-16 03:31:34,565: t15.2023.12.03 val PER: 0.0756 2025-09-16 03:31:34,565: t15.2023.12.08 val PER: 0.0519 2025-09-16 03:31:34,565: t15.2023.12.10 val PER: 0.0644 2025-09-16 03:31:34,565: t15.2023.12.17 val PER: 0.1050 2025-09-16 03:31:34,565: t15.2023.12.29 val PER: 0.0975 2025-09-16 03:31:34,565: t15.2024.02.25 val PER: 0.0885 2025-09-16 03:31:34,565: t15.2024.03.08 val PER: 0.1863 2025-09-16 03:31:34,565: t15.2024.03.15 val PER: 0.1782 2025-09-16 03:31:34,565: t15.2024.03.17 val PER: 0.0837 2025-09-16 03:31:34,565: t15.2024.05.10 val PER: 0.1649 2025-09-16 03:31:34,565: t15.2024.06.14 val PER: 0.1278 2025-09-16 03:31:34,565: t15.2024.07.19 val PER: 0.1898 2025-09-16 03:31:34,566: t15.2024.07.21 val PER: 0.0669 2025-09-16 03:31:34,566: t15.2024.07.28 val PER: 0.1235 2025-09-16 03:31:34,566: t15.2025.01.10 val PER: 0.2755 2025-09-16 03:31:34,566: t15.2025.01.12 val PER: 0.1070 2025-09-16 03:31:34,566: t15.2025.03.14 val PER: 0.3240 2025-09-16 03:31:34,566: t15.2025.03.16 val PER: 0.1662 2025-09-16 03:31:34,566: t15.2025.03.30 val PER: 0.2356 2025-09-16 03:31:34,566: t15.2025.04.13 val PER: 0.2311 2025-09-16 03:31:34,566: New best test PER 0.1253 --> 0.1241 2025-09-16 03:31:34,566: Checkpointing model 2025-09-16 03:31:35,989: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 03:32:04,416: Train batch 24200: loss: 0.34 grad norm: 10.37 time: 0.121 2025-09-16 03:32:36,090: Train batch 24400: loss: 0.14 grad norm: 7.29 time: 0.124 2025-09-16 03:33:08,815: Train batch 24600: loss: 0.34 grad norm: 8.01 time: 0.154 2025-09-16 03:33:41,305: Train batch 24800: loss: 0.47 grad norm: 10.35 time: 0.134 2025-09-16 03:34:13,312: Train batch 25000: loss: 0.46 grad norm: 14.44 time: 0.115 2025-09-16 03:34:46,991: Train batch 25200: loss: 0.15 grad norm: 7.48 time: 0.147 2025-09-16 03:35:20,126: Train batch 25400: loss: 0.12 grad norm: 4.96 time: 0.122 2025-09-16 03:35:54,491: Train batch 25600: loss: 0.12 grad norm: 5.89 time: 0.153 2025-09-16 03:36:28,330: Train batch 25800: loss: 0.29 grad norm: 10.80 time: 0.164 2025-09-16 03:37:00,621: Train batch 26000: loss: 0.29 grad norm: 9.82 time: 0.102 2025-09-16 03:37:00,621: Running test after training batch: 26000 2025-09-16 03:37:11,297: Val batch 26000: PER (avg): 0.1213 CTC Loss (avg): 26.1406 time: 10.676 2025-09-16 03:37:11,298: t15.2023.08.13 val PER: 0.1008 2025-09-16 03:37:11,298: t15.2023.08.18 val PER: 0.0813 2025-09-16 03:37:11,298: t15.2023.08.20 val PER: 0.0643 2025-09-16 03:37:11,298: t15.2023.08.25 val PER: 0.0964 2025-09-16 03:37:11,298: t15.2023.08.27 val PER: 0.1752 2025-09-16 03:37:11,298: t15.2023.09.01 val PER: 0.0528 2025-09-16 03:37:11,298: t15.2023.09.03 val PER: 0.1330 2025-09-16 03:37:11,298: t15.2023.09.24 val PER: 0.1044 2025-09-16 03:37:11,298: t15.2023.09.29 val PER: 0.1123 2025-09-16 03:37:11,298: t15.2023.10.01 val PER: 0.1513 2025-09-16 03:37:11,298: t15.2023.10.06 val PER: 0.0538 2025-09-16 03:37:11,298: t15.2023.10.08 val PER: 0.2084 2025-09-16 03:37:11,298: t15.2023.10.13 val PER: 0.1730 2025-09-16 03:37:11,298: t15.2023.10.15 val PER: 0.1213 2025-09-16 03:37:11,298: t15.2023.10.20 val PER: 0.1745 2025-09-16 03:37:11,298: t15.2023.10.22 val PER: 0.1036 2025-09-16 03:37:11,298: t15.2023.11.03 val PER: 0.1676 2025-09-16 03:37:11,299: t15.2023.11.04 val PER: 0.0102 2025-09-16 03:37:11,299: t15.2023.11.17 val PER: 0.0280 2025-09-16 03:37:11,299: t15.2023.11.19 val PER: 0.0240 2025-09-16 03:37:11,299: t15.2023.11.26 val PER: 0.0572 2025-09-16 03:37:11,299: t15.2023.12.03 val PER: 0.0651 2025-09-16 03:37:11,299: t15.2023.12.08 val PER: 0.0493 2025-09-16 03:37:11,299: t15.2023.12.10 val PER: 0.0552 2025-09-16 03:37:11,299: t15.2023.12.17 val PER: 0.0956 2025-09-16 03:37:11,299: t15.2023.12.29 val PER: 0.0933 2025-09-16 03:37:11,299: t15.2024.02.25 val PER: 0.0983 2025-09-16 03:37:11,299: t15.2024.03.08 val PER: 0.1863 2025-09-16 03:37:11,299: t15.2024.03.15 val PER: 0.1757 2025-09-16 03:37:11,299: t15.2024.03.17 val PER: 0.0823 2025-09-16 03:37:11,299: t15.2024.05.10 val PER: 0.1382 2025-09-16 03:37:11,299: t15.2024.06.14 val PER: 0.1388 2025-09-16 03:37:11,299: t15.2024.07.19 val PER: 0.1931 2025-09-16 03:37:11,299: t15.2024.07.21 val PER: 0.0648 2025-09-16 03:37:11,299: t15.2024.07.28 val PER: 0.1118 2025-09-16 03:37:11,299: t15.2025.01.10 val PER: 0.2755 2025-09-16 03:37:11,300: t15.2025.01.12 val PER: 0.1008 2025-09-16 03:37:11,300: t15.2025.03.14 val PER: 0.3166 2025-09-16 03:37:11,300: t15.2025.03.16 val PER: 0.1872 2025-09-16 03:37:11,300: t15.2025.03.30 val PER: 0.2402 2025-09-16 03:37:11,300: t15.2025.04.13 val PER: 0.2354 2025-09-16 03:37:11,300: New best test PER 0.1241 --> 0.1213 2025-09-16 03:37:11,300: Checkpointing model 2025-09-16 03:37:12,572: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 03:37:39,451: Train batch 26200: loss: 0.12 grad norm: 5.56 time: 0.151 2025-09-16 03:38:11,717: Train batch 26400: loss: 0.66 grad norm: 4.58 time: 0.116 2025-09-16 03:38:43,882: Train batch 26600: loss: 0.09 grad norm: 4.84 time: 0.106 2025-09-16 03:39:15,889: Train batch 26800: loss: 0.17 grad norm: 13.27 time: 0.134 2025-09-16 03:39:49,026: Train batch 27000: loss: 0.20 grad norm: 6.92 time: 0.122 2025-09-16 03:40:21,910: Train batch 27200: loss: 0.43 grad norm: 18.42 time: 0.138 2025-09-16 03:40:54,151: Train batch 27400: loss: 0.12 grad norm: 5.43 time: 0.125 2025-09-16 03:41:27,269: Train batch 27600: loss: 0.15 grad norm: 7.89 time: 0.114 2025-09-16 03:42:00,546: Train batch 27800: loss: 0.24 grad norm: 13.90 time: 0.130 2025-09-16 03:42:33,753: Train batch 28000: loss: 0.11 grad norm: 6.05 time: 0.121 2025-09-16 03:42:33,754: Running test after training batch: 28000 2025-09-16 03:42:44,647: Val batch 28000: PER (avg): 0.1229 CTC Loss (avg): 26.9724 time: 10.893 2025-09-16 03:42:44,647: t15.2023.08.13 val PER: 0.0998 2025-09-16 03:42:44,647: t15.2023.08.18 val PER: 0.0872 2025-09-16 03:42:44,647: t15.2023.08.20 val PER: 0.0612 2025-09-16 03:42:44,647: t15.2023.08.25 val PER: 0.0798 2025-09-16 03:42:44,648: t15.2023.08.27 val PER: 0.1881 2025-09-16 03:42:44,648: t15.2023.09.01 val PER: 0.0544 2025-09-16 03:42:44,648: t15.2023.09.03 val PER: 0.1235 2025-09-16 03:42:44,648: t15.2023.09.24 val PER: 0.0959 2025-09-16 03:42:44,648: t15.2023.09.29 val PER: 0.1059 2025-09-16 03:42:44,648: t15.2023.10.01 val PER: 0.1499 2025-09-16 03:42:44,648: t15.2023.10.06 val PER: 0.0624 2025-09-16 03:42:44,648: t15.2023.10.08 val PER: 0.2111 2025-09-16 03:42:44,648: t15.2023.10.13 val PER: 0.1877 2025-09-16 03:42:44,648: t15.2023.10.15 val PER: 0.1233 2025-09-16 03:42:44,648: t15.2023.10.20 val PER: 0.1946 2025-09-16 03:42:44,648: t15.2023.10.22 val PER: 0.1169 2025-09-16 03:42:44,648: t15.2023.11.03 val PER: 0.1744 2025-09-16 03:42:44,648: t15.2023.11.04 val PER: 0.0137 2025-09-16 03:42:44,648: t15.2023.11.17 val PER: 0.0358 2025-09-16 03:42:44,648: t15.2023.11.19 val PER: 0.0160 2025-09-16 03:42:44,648: t15.2023.11.26 val PER: 0.0674 2025-09-16 03:42:44,648: t15.2023.12.03 val PER: 0.0798 2025-09-16 03:42:44,648: t15.2023.12.08 val PER: 0.0586 2025-09-16 03:42:44,649: t15.2023.12.10 val PER: 0.0499 2025-09-16 03:42:44,649: t15.2023.12.17 val PER: 0.1050 2025-09-16 03:42:44,649: t15.2023.12.29 val PER: 0.0940 2025-09-16 03:42:44,649: t15.2024.02.25 val PER: 0.0941 2025-09-16 03:42:44,649: t15.2024.03.08 val PER: 0.2077 2025-09-16 03:42:44,649: t15.2024.03.15 val PER: 0.1707 2025-09-16 03:42:44,649: t15.2024.03.17 val PER: 0.0886 2025-09-16 03:42:44,649: t15.2024.05.10 val PER: 0.1501 2025-09-16 03:42:44,649: t15.2024.06.14 val PER: 0.1467 2025-09-16 03:42:44,649: t15.2024.07.19 val PER: 0.1945 2025-09-16 03:42:44,649: t15.2024.07.21 val PER: 0.0634 2025-09-16 03:42:44,649: t15.2024.07.28 val PER: 0.1110 2025-09-16 03:42:44,649: t15.2025.01.10 val PER: 0.2893 2025-09-16 03:42:44,649: t15.2025.01.12 val PER: 0.0955 2025-09-16 03:42:44,649: t15.2025.03.14 val PER: 0.2885 2025-09-16 03:42:44,649: t15.2025.03.16 val PER: 0.1597 2025-09-16 03:42:44,649: t15.2025.03.30 val PER: 0.2368 2025-09-16 03:42:44,649: t15.2025.04.13 val PER: 0.2325 2025-09-16 03:43:12,759: Train batch 28200: loss: 0.28 grad norm: 6.94 time: 0.154 2025-09-16 03:43:44,780: Train batch 28400: loss: 0.71 grad norm: 27.81 time: 0.115 2025-09-16 03:44:18,034: Train batch 28600: loss: 0.06 grad norm: 2.61 time: 0.151 2025-09-16 03:44:50,409: Train batch 28800: loss: 0.18 grad norm: 7.18 time: 0.116 2025-09-16 03:45:24,076: Train batch 29000: loss: 0.05 grad norm: 4.52 time: 0.127 2025-09-16 03:45:56,717: Train batch 29200: loss: 0.17 grad norm: 5.55 time: 0.107 2025-09-16 03:46:29,841: Train batch 29400: loss: 0.23 grad norm: 4.61 time: 0.123 2025-09-16 03:47:02,600: Train batch 29600: loss: 0.24 grad norm: 24.20 time: 0.112 2025-09-16 03:47:36,006: Train batch 29800: loss: 0.11 grad norm: 4.95 time: 0.112 2025-09-16 03:48:08,354: Train batch 30000: loss: 0.07 grad norm: 4.89 time: 0.126 2025-09-16 03:48:08,354: Running test after training batch: 30000 2025-09-16 03:48:19,117: Val batch 30000: PER (avg): 0.1210 CTC Loss (avg): 27.2096 time: 10.763 2025-09-16 03:48:19,118: t15.2023.08.13 val PER: 0.0967 2025-09-16 03:48:19,118: t15.2023.08.18 val PER: 0.0746 2025-09-16 03:48:19,118: t15.2023.08.20 val PER: 0.0620 2025-09-16 03:48:19,118: t15.2023.08.25 val PER: 0.0873 2025-09-16 03:48:19,118: t15.2023.08.27 val PER: 0.1817 2025-09-16 03:48:19,118: t15.2023.09.01 val PER: 0.0503 2025-09-16 03:48:19,118: t15.2023.09.03 val PER: 0.1342 2025-09-16 03:48:19,118: t15.2023.09.24 val PER: 0.1019 2025-09-16 03:48:19,118: t15.2023.09.29 val PER: 0.1085 2025-09-16 03:48:19,118: t15.2023.10.01 val PER: 0.1631 2025-09-16 03:48:19,118: t15.2023.10.06 val PER: 0.0603 2025-09-16 03:48:19,118: t15.2023.10.08 val PER: 0.2152 2025-09-16 03:48:19,119: t15.2023.10.13 val PER: 0.1854 2025-09-16 03:48:19,119: t15.2023.10.15 val PER: 0.1272 2025-09-16 03:48:19,119: t15.2023.10.20 val PER: 0.1745 2025-09-16 03:48:19,119: t15.2023.10.22 val PER: 0.1114 2025-09-16 03:48:19,119: t15.2023.11.03 val PER: 0.1771 2025-09-16 03:48:19,119: t15.2023.11.04 val PER: 0.0034 2025-09-16 03:48:19,119: t15.2023.11.17 val PER: 0.0202 2025-09-16 03:48:19,119: t15.2023.11.19 val PER: 0.0180 2025-09-16 03:48:19,119: t15.2023.11.26 val PER: 0.0594 2025-09-16 03:48:19,119: t15.2023.12.03 val PER: 0.0777 2025-09-16 03:48:19,119: t15.2023.12.08 val PER: 0.0459 2025-09-16 03:48:19,119: t15.2023.12.10 val PER: 0.0578 2025-09-16 03:48:19,119: t15.2023.12.17 val PER: 0.0977 2025-09-16 03:48:19,119: t15.2023.12.29 val PER: 0.1030 2025-09-16 03:48:19,119: t15.2024.02.25 val PER: 0.0885 2025-09-16 03:48:19,119: t15.2024.03.08 val PER: 0.1764 2025-09-16 03:48:19,119: t15.2024.03.15 val PER: 0.1620 2025-09-16 03:48:19,119: t15.2024.03.17 val PER: 0.0900 2025-09-16 03:48:19,119: t15.2024.05.10 val PER: 0.1441 2025-09-16 03:48:19,120: t15.2024.06.14 val PER: 0.1498 2025-09-16 03:48:19,120: t15.2024.07.19 val PER: 0.1721 2025-09-16 03:48:19,120: t15.2024.07.21 val PER: 0.0669 2025-09-16 03:48:19,120: t15.2024.07.28 val PER: 0.1007 2025-09-16 03:48:19,120: t15.2025.01.10 val PER: 0.2658 2025-09-16 03:48:19,120: t15.2025.01.12 val PER: 0.1001 2025-09-16 03:48:19,120: t15.2025.03.14 val PER: 0.3269 2025-09-16 03:48:19,120: t15.2025.03.16 val PER: 0.1715 2025-09-16 03:48:19,120: t15.2025.03.30 val PER: 0.2471 2025-09-16 03:48:19,120: t15.2025.04.13 val PER: 0.2197 2025-09-16 03:48:19,120: New best test PER 0.1213 --> 0.1210 2025-09-16 03:48:19,120: Checkpointing model 2025-09-16 03:48:20,497: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 03:48:48,314: Train batch 30200: loss: 0.05 grad norm: 3.01 time: 0.114 2025-09-16 03:49:21,026: Train batch 30400: loss: 0.13 grad norm: 8.20 time: 0.127 2025-09-16 03:49:52,963: Train batch 30600: loss: 0.07 grad norm: 4.41 time: 0.142 2025-09-16 03:50:24,602: Train batch 30800: loss: 0.08 grad norm: 15.94 time: 0.112 2025-09-16 03:50:57,635: Train batch 31000: loss: 0.13 grad norm: 6.11 time: 0.112 2025-09-16 03:51:29,350: Train batch 31200: loss: 0.77 grad norm: 14.62 time: 0.131 2025-09-16 03:52:01,814: Train batch 31400: loss: 0.20 grad norm: 6.81 time: 0.127 2025-09-16 03:52:33,038: Train batch 31600: loss: 0.16 grad norm: 10.17 time: 0.140 2025-09-16 03:53:04,407: Train batch 31800: loss: 0.16 grad norm: 9.39 time: 0.102 2025-09-16 03:53:36,898: Train batch 32000: loss: 0.08 grad norm: 7.02 time: 0.116 2025-09-16 03:53:36,898: Running test after training batch: 32000 2025-09-16 03:53:47,688: Val batch 32000: PER (avg): 0.1194 CTC Loss (avg): 26.8790 time: 10.790 2025-09-16 03:53:47,689: t15.2023.08.13 val PER: 0.1029 2025-09-16 03:53:47,689: t15.2023.08.18 val PER: 0.0805 2025-09-16 03:53:47,689: t15.2023.08.20 val PER: 0.0667 2025-09-16 03:53:47,689: t15.2023.08.25 val PER: 0.0919 2025-09-16 03:53:47,689: t15.2023.08.27 val PER: 0.1752 2025-09-16 03:53:47,689: t15.2023.09.01 val PER: 0.0503 2025-09-16 03:53:47,689: t15.2023.09.03 val PER: 0.1390 2025-09-16 03:53:47,689: t15.2023.09.24 val PER: 0.0947 2025-09-16 03:53:47,689: t15.2023.09.29 val PER: 0.1104 2025-09-16 03:53:47,689: t15.2023.10.01 val PER: 0.1341 2025-09-16 03:53:47,689: t15.2023.10.06 val PER: 0.0678 2025-09-16 03:53:47,689: t15.2023.10.08 val PER: 0.1989 2025-09-16 03:53:47,690: t15.2023.10.13 val PER: 0.1746 2025-09-16 03:53:47,690: t15.2023.10.15 val PER: 0.1371 2025-09-16 03:53:47,690: t15.2023.10.20 val PER: 0.1879 2025-09-16 03:53:47,690: t15.2023.10.22 val PER: 0.1158 2025-09-16 03:53:47,690: t15.2023.11.03 val PER: 0.1615 2025-09-16 03:53:47,690: t15.2023.11.04 val PER: 0.0034 2025-09-16 03:53:47,690: t15.2023.11.17 val PER: 0.0327 2025-09-16 03:53:47,690: t15.2023.11.19 val PER: 0.0100 2025-09-16 03:53:47,690: t15.2023.11.26 val PER: 0.0630 2025-09-16 03:53:47,690: t15.2023.12.03 val PER: 0.0672 2025-09-16 03:53:47,690: t15.2023.12.08 val PER: 0.0539 2025-09-16 03:53:47,690: t15.2023.12.10 val PER: 0.0434 2025-09-16 03:53:47,690: t15.2023.12.17 val PER: 0.1040 2025-09-16 03:53:47,690: t15.2023.12.29 val PER: 0.0940 2025-09-16 03:53:47,690: t15.2024.02.25 val PER: 0.0927 2025-09-16 03:53:47,690: t15.2024.03.08 val PER: 0.1892 2025-09-16 03:53:47,690: t15.2024.03.15 val PER: 0.1720 2025-09-16 03:53:47,691: t15.2024.03.17 val PER: 0.0872 2025-09-16 03:53:47,691: t15.2024.05.10 val PER: 0.1248 2025-09-16 03:53:47,691: t15.2024.06.14 val PER: 0.1293 2025-09-16 03:53:47,691: t15.2024.07.19 val PER: 0.1852 2025-09-16 03:53:47,691: t15.2024.07.21 val PER: 0.0690 2025-09-16 03:53:47,691: t15.2024.07.28 val PER: 0.1088 2025-09-16 03:53:47,691: t15.2025.01.10 val PER: 0.2658 2025-09-16 03:53:47,691: t15.2025.01.12 val PER: 0.0939 2025-09-16 03:53:47,691: t15.2025.03.14 val PER: 0.2796 2025-09-16 03:53:47,691: t15.2025.03.16 val PER: 0.1505 2025-09-16 03:53:47,691: t15.2025.03.30 val PER: 0.2540 2025-09-16 03:53:47,691: t15.2025.04.13 val PER: 0.2254 2025-09-16 03:53:47,691: New best test PER 0.1210 --> 0.1194 2025-09-16 03:53:47,691: Checkpointing model 2025-09-16 03:53:48,951: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 03:54:16,915: Train batch 32200: loss: 0.10 grad norm: 3.99 time: 0.137 2025-09-16 03:54:50,444: Train batch 32400: loss: 0.08 grad norm: 4.72 time: 0.125 2025-09-16 03:55:23,341: Train batch 32600: loss: 0.19 grad norm: 6.49 time: 0.136 2025-09-16 03:55:55,882: Train batch 32800: loss: 0.08 grad norm: 5.32 time: 0.147 2025-09-16 03:56:27,803: Train batch 33000: loss: 0.12 grad norm: 8.34 time: 0.133 2025-09-16 03:57:00,379: Train batch 33200: loss: 0.10 grad norm: 5.39 time: 0.174 2025-09-16 03:57:32,384: Train batch 33400: loss: 0.11 grad norm: 6.06 time: 0.137 2025-09-16 03:58:05,371: Train batch 33600: loss: 0.10 grad norm: 5.31 time: 0.117 2025-09-16 03:58:38,729: Train batch 33800: loss: 0.41 grad norm: 13.39 time: 0.114 2025-09-16 03:59:12,151: Train batch 34000: loss: 0.11 grad norm: 5.43 time: 0.146 2025-09-16 03:59:12,151: Running test after training batch: 34000 2025-09-16 03:59:22,681: Val batch 34000: PER (avg): 0.1190 CTC Loss (avg): 27.7464 time: 10.529 2025-09-16 03:59:22,681: t15.2023.08.13 val PER: 0.0894 2025-09-16 03:59:22,681: t15.2023.08.18 val PER: 0.0796 2025-09-16 03:59:22,681: t15.2023.08.20 val PER: 0.0683 2025-09-16 03:59:22,681: t15.2023.08.25 val PER: 0.0843 2025-09-16 03:59:22,681: t15.2023.08.27 val PER: 0.1849 2025-09-16 03:59:22,681: t15.2023.09.01 val PER: 0.0503 2025-09-16 03:59:22,681: t15.2023.09.03 val PER: 0.1390 2025-09-16 03:59:22,681: t15.2023.09.24 val PER: 0.1056 2025-09-16 03:59:22,682: t15.2023.09.29 val PER: 0.1110 2025-09-16 03:59:22,682: t15.2023.10.01 val PER: 0.1480 2025-09-16 03:59:22,682: t15.2023.10.06 val PER: 0.0603 2025-09-16 03:59:22,682: t15.2023.10.08 val PER: 0.2138 2025-09-16 03:59:22,682: t15.2023.10.13 val PER: 0.1877 2025-09-16 03:59:22,682: t15.2023.10.15 val PER: 0.1147 2025-09-16 03:59:22,682: t15.2023.10.20 val PER: 0.1812 2025-09-16 03:59:22,682: t15.2023.10.22 val PER: 0.1091 2025-09-16 03:59:22,682: t15.2023.11.03 val PER: 0.1689 2025-09-16 03:59:22,682: t15.2023.11.04 val PER: 0.0102 2025-09-16 03:59:22,682: t15.2023.11.17 val PER: 0.0264 2025-09-16 03:59:22,682: t15.2023.11.19 val PER: 0.0120 2025-09-16 03:59:22,682: t15.2023.11.26 val PER: 0.0681 2025-09-16 03:59:22,682: t15.2023.12.03 val PER: 0.0672 2025-09-16 03:59:22,682: t15.2023.12.08 val PER: 0.0499 2025-09-16 03:59:22,682: t15.2023.12.10 val PER: 0.0420 2025-09-16 03:59:22,682: t15.2023.12.17 val PER: 0.0936 2025-09-16 03:59:22,682: t15.2023.12.29 val PER: 0.1043 2025-09-16 03:59:22,682: t15.2024.02.25 val PER: 0.0815 2025-09-16 03:59:22,683: t15.2024.03.08 val PER: 0.2091 2025-09-16 03:59:22,683: t15.2024.03.15 val PER: 0.1757 2025-09-16 03:59:22,683: t15.2024.03.17 val PER: 0.0893 2025-09-16 03:59:22,683: t15.2024.05.10 val PER: 0.1337 2025-09-16 03:59:22,683: t15.2024.06.14 val PER: 0.1183 2025-09-16 03:59:22,683: t15.2024.07.19 val PER: 0.1859 2025-09-16 03:59:22,683: t15.2024.07.21 val PER: 0.0648 2025-09-16 03:59:22,683: t15.2024.07.28 val PER: 0.1059 2025-09-16 03:59:22,683: t15.2025.01.10 val PER: 0.2769 2025-09-16 03:59:22,683: t15.2025.01.12 val PER: 0.0885 2025-09-16 03:59:22,683: t15.2025.03.14 val PER: 0.2929 2025-09-16 03:59:22,683: t15.2025.03.16 val PER: 0.1309 2025-09-16 03:59:22,683: t15.2025.03.30 val PER: 0.2356 2025-09-16 03:59:22,683: t15.2025.04.13 val PER: 0.1997 2025-09-16 03:59:22,683: New best test PER 0.1194 --> 0.1190 2025-09-16 03:59:22,683: Checkpointing model 2025-09-16 03:59:24,053: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 03:59:51,488: Train batch 34200: loss: 0.04 grad norm: 3.33 time: 0.143 2025-09-16 04:00:24,194: Train batch 34400: loss: 0.09 grad norm: 6.09 time: 0.117 2025-09-16 04:00:56,988: Train batch 34600: loss: 0.07 grad norm: 3.65 time: 0.137 2025-09-16 04:01:29,604: Train batch 34800: loss: 0.26 grad norm: 8.41 time: 0.113 2025-09-16 04:02:02,139: Train batch 35000: loss: 0.17 grad norm: 8.30 time: 0.118 2025-09-16 04:02:34,597: Train batch 35200: loss: 0.03 grad norm: 2.58 time: 0.126 2025-09-16 04:03:07,677: Train batch 35400: loss: 0.06 grad norm: 3.95 time: 0.149 2025-09-16 04:03:40,545: Train batch 35600: loss: 0.05 grad norm: 2.74 time: 0.107 2025-09-16 04:04:12,828: Train batch 35800: loss: 0.05 grad norm: 3.35 time: 0.168 2025-09-16 04:04:46,142: Train batch 36000: loss: 0.31 grad norm: 2.65 time: 0.155 2025-09-16 04:04:46,143: Running test after training batch: 36000 2025-09-16 04:04:56,539: Val batch 36000: PER (avg): 0.1167 CTC Loss (avg): 27.0357 time: 10.396 2025-09-16 04:04:56,539: t15.2023.08.13 val PER: 0.0925 2025-09-16 04:04:56,540: t15.2023.08.18 val PER: 0.0796 2025-09-16 04:04:56,540: t15.2023.08.20 val PER: 0.0659 2025-09-16 04:04:56,540: t15.2023.08.25 val PER: 0.0964 2025-09-16 04:04:56,540: t15.2023.08.27 val PER: 0.1897 2025-09-16 04:04:56,540: t15.2023.09.01 val PER: 0.0544 2025-09-16 04:04:56,540: t15.2023.09.03 val PER: 0.1259 2025-09-16 04:04:56,540: t15.2023.09.24 val PER: 0.1044 2025-09-16 04:04:56,540: t15.2023.09.29 val PER: 0.1059 2025-09-16 04:04:56,540: t15.2023.10.01 val PER: 0.1407 2025-09-16 04:04:56,540: t15.2023.10.06 val PER: 0.0624 2025-09-16 04:04:56,540: t15.2023.10.08 val PER: 0.2084 2025-09-16 04:04:56,540: t15.2023.10.13 val PER: 0.1808 2025-09-16 04:04:56,540: t15.2023.10.15 val PER: 0.1134 2025-09-16 04:04:56,540: t15.2023.10.20 val PER: 0.1711 2025-09-16 04:04:56,540: t15.2023.10.22 val PER: 0.1102 2025-09-16 04:04:56,540: t15.2023.11.03 val PER: 0.1649 2025-09-16 04:04:56,540: t15.2023.11.04 val PER: 0.0137 2025-09-16 04:04:56,540: t15.2023.11.17 val PER: 0.0280 2025-09-16 04:04:56,540: t15.2023.11.19 val PER: 0.0100 2025-09-16 04:04:56,541: t15.2023.11.26 val PER: 0.0529 2025-09-16 04:04:56,541: t15.2023.12.03 val PER: 0.0662 2025-09-16 04:04:56,541: t15.2023.12.08 val PER: 0.0519 2025-09-16 04:04:56,541: t15.2023.12.10 val PER: 0.0499 2025-09-16 04:04:56,541: t15.2023.12.17 val PER: 0.0894 2025-09-16 04:04:56,541: t15.2023.12.29 val PER: 0.0872 2025-09-16 04:04:56,541: t15.2024.02.25 val PER: 0.0744 2025-09-16 04:04:56,541: t15.2024.03.08 val PER: 0.1764 2025-09-16 04:04:56,541: t15.2024.03.15 val PER: 0.1626 2025-09-16 04:04:56,541: t15.2024.03.17 val PER: 0.0907 2025-09-16 04:04:56,541: t15.2024.05.10 val PER: 0.1293 2025-09-16 04:04:56,541: t15.2024.06.14 val PER: 0.1293 2025-09-16 04:04:56,541: t15.2024.07.19 val PER: 0.1780 2025-09-16 04:04:56,541: t15.2024.07.21 val PER: 0.0593 2025-09-16 04:04:56,541: t15.2024.07.28 val PER: 0.0956 2025-09-16 04:04:56,541: t15.2025.01.10 val PER: 0.2769 2025-09-16 04:04:56,541: t15.2025.01.12 val PER: 0.0808 2025-09-16 04:04:56,541: t15.2025.03.14 val PER: 0.3136 2025-09-16 04:04:56,541: t15.2025.03.16 val PER: 0.1453 2025-09-16 04:04:56,542: t15.2025.03.30 val PER: 0.2563 2025-09-16 04:04:56,542: t15.2025.04.13 val PER: 0.2397 2025-09-16 04:04:56,542: New best test PER 0.1190 --> 0.1167 2025-09-16 04:04:56,542: Checkpointing model 2025-09-16 04:04:57,843: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 04:05:25,251: Train batch 36200: loss: 0.03 grad norm: 2.64 time: 0.140 2025-09-16 04:05:57,704: Train batch 36400: loss: 0.07 grad norm: 3.52 time: 0.169 2025-09-16 04:06:29,789: Train batch 36600: loss: 0.04 grad norm: 2.88 time: 0.160 2025-09-16 04:07:02,372: Train batch 36800: loss: 0.08 grad norm: 3.43 time: 0.160 2025-09-16 04:07:34,836: Train batch 37000: loss: 0.18 grad norm: 6.81 time: 0.137 2025-09-16 04:08:06,950: Train batch 37200: loss: 0.03 grad norm: 3.43 time: 0.113 2025-09-16 04:08:38,731: Train batch 37400: loss: 0.19 grad norm: 4.13 time: 0.129 2025-09-16 04:09:10,403: Train batch 37600: loss: 0.10 grad norm: 4.61 time: 0.102 2025-09-16 04:09:43,349: Train batch 37800: loss: 0.09 grad norm: 5.99 time: 0.128 2025-09-16 04:10:15,708: Train batch 38000: loss: 0.07 grad norm: 3.07 time: 0.108 2025-09-16 04:10:15,708: Running test after training batch: 38000 2025-09-16 04:10:26,299: Val batch 38000: PER (avg): 0.1188 CTC Loss (avg): 28.1456 time: 10.590 2025-09-16 04:10:26,299: t15.2023.08.13 val PER: 0.0894 2025-09-16 04:10:26,299: t15.2023.08.18 val PER: 0.0855 2025-09-16 04:10:26,299: t15.2023.08.20 val PER: 0.0627 2025-09-16 04:10:26,299: t15.2023.08.25 val PER: 0.0873 2025-09-16 04:10:26,299: t15.2023.08.27 val PER: 0.1897 2025-09-16 04:10:26,299: t15.2023.09.01 val PER: 0.0536 2025-09-16 04:10:26,299: t15.2023.09.03 val PER: 0.1188 2025-09-16 04:10:26,300: t15.2023.09.24 val PER: 0.0983 2025-09-16 04:10:26,300: t15.2023.09.29 val PER: 0.1021 2025-09-16 04:10:26,300: t15.2023.10.01 val PER: 0.1473 2025-09-16 04:10:26,300: t15.2023.10.06 val PER: 0.0700 2025-09-16 04:10:26,300: t15.2023.10.08 val PER: 0.2206 2025-09-16 04:10:26,300: t15.2023.10.13 val PER: 0.1854 2025-09-16 04:10:26,300: t15.2023.10.15 val PER: 0.1200 2025-09-16 04:10:26,300: t15.2023.10.20 val PER: 0.1745 2025-09-16 04:10:26,300: t15.2023.10.22 val PER: 0.1047 2025-09-16 04:10:26,300: t15.2023.11.03 val PER: 0.1682 2025-09-16 04:10:26,300: t15.2023.11.04 val PER: 0.0068 2025-09-16 04:10:26,300: t15.2023.11.17 val PER: 0.0280 2025-09-16 04:10:26,300: t15.2023.11.19 val PER: 0.0120 2025-09-16 04:10:26,300: t15.2023.11.26 val PER: 0.0543 2025-09-16 04:10:26,300: t15.2023.12.03 val PER: 0.0588 2025-09-16 04:10:26,300: t15.2023.12.08 val PER: 0.0506 2025-09-16 04:10:26,300: t15.2023.12.10 val PER: 0.0460 2025-09-16 04:10:26,300: t15.2023.12.17 val PER: 0.0946 2025-09-16 04:10:26,300: t15.2023.12.29 val PER: 0.0933 2025-09-16 04:10:26,301: t15.2024.02.25 val PER: 0.1053 2025-09-16 04:10:26,301: t15.2024.03.08 val PER: 0.1977 2025-09-16 04:10:26,301: t15.2024.03.15 val PER: 0.1770 2025-09-16 04:10:26,301: t15.2024.03.17 val PER: 0.0844 2025-09-16 04:10:26,301: t15.2024.05.10 val PER: 0.1426 2025-09-16 04:10:26,301: t15.2024.06.14 val PER: 0.1325 2025-09-16 04:10:26,301: t15.2024.07.19 val PER: 0.1773 2025-09-16 04:10:26,301: t15.2024.07.21 val PER: 0.0697 2025-09-16 04:10:26,301: t15.2024.07.28 val PER: 0.0919 2025-09-16 04:10:26,301: t15.2025.01.10 val PER: 0.2851 2025-09-16 04:10:26,301: t15.2025.01.12 val PER: 0.1039 2025-09-16 04:10:26,301: t15.2025.03.14 val PER: 0.2885 2025-09-16 04:10:26,301: t15.2025.03.16 val PER: 0.1453 2025-09-16 04:10:26,301: t15.2025.03.30 val PER: 0.2483 2025-09-16 04:10:26,301: t15.2025.04.13 val PER: 0.2154 2025-09-16 04:10:53,936: Train batch 38200: loss: 0.01 grad norm: 0.71 time: 0.149 2025-09-16 04:11:26,923: Train batch 38400: loss: 0.02 grad norm: 1.25 time: 0.117 2025-09-16 04:11:59,784: Train batch 38600: loss: 0.09 grad norm: 5.17 time: 0.136 2025-09-16 04:12:32,347: Train batch 38800: loss: 0.01 grad norm: 1.35 time: 0.111 2025-09-16 04:13:04,367: Train batch 39000: loss: 0.07 grad norm: 6.18 time: 0.132 2025-09-16 04:13:36,717: Train batch 39200: loss: 0.20 grad norm: 14.22 time: 0.155 2025-09-16 04:14:08,445: Train batch 39400: loss: 0.07 grad norm: 5.91 time: 0.115 2025-09-16 04:14:40,218: Train batch 39600: loss: 0.04 grad norm: 5.09 time: 0.124 2025-09-16 04:15:12,441: Train batch 39800: loss: 0.04 grad norm: 4.57 time: 0.133 2025-09-16 04:15:44,494: Train batch 40000: loss: 0.14 grad norm: 11.04 time: 0.151 2025-09-16 04:15:44,495: Running test after training batch: 40000 2025-09-16 04:15:54,954: Val batch 40000: PER (avg): 0.1157 CTC Loss (avg): 27.0700 time: 10.459 2025-09-16 04:15:54,955: t15.2023.08.13 val PER: 0.0884 2025-09-16 04:15:54,955: t15.2023.08.18 val PER: 0.0872 2025-09-16 04:15:54,955: t15.2023.08.20 val PER: 0.0699 2025-09-16 04:15:54,955: t15.2023.08.25 val PER: 0.0964 2025-09-16 04:15:54,955: t15.2023.08.27 val PER: 0.1817 2025-09-16 04:15:54,956: t15.2023.09.01 val PER: 0.0552 2025-09-16 04:15:54,956: t15.2023.09.03 val PER: 0.1283 2025-09-16 04:15:54,956: t15.2023.09.24 val PER: 0.1092 2025-09-16 04:15:54,956: t15.2023.09.29 val PER: 0.1040 2025-09-16 04:15:54,956: t15.2023.10.01 val PER: 0.1407 2025-09-16 04:15:54,956: t15.2023.10.06 val PER: 0.0603 2025-09-16 04:15:54,956: t15.2023.10.08 val PER: 0.2165 2025-09-16 04:15:54,957: t15.2023.10.13 val PER: 0.1761 2025-09-16 04:15:54,957: t15.2023.10.15 val PER: 0.1160 2025-09-16 04:15:54,957: t15.2023.10.20 val PER: 0.2013 2025-09-16 04:15:54,957: t15.2023.10.22 val PER: 0.1102 2025-09-16 04:15:54,957: t15.2023.11.03 val PER: 0.1567 2025-09-16 04:15:54,957: t15.2023.11.04 val PER: 0.0000 2025-09-16 04:15:54,957: t15.2023.11.17 val PER: 0.0264 2025-09-16 04:15:54,957: t15.2023.11.19 val PER: 0.0080 2025-09-16 04:15:54,957: t15.2023.11.26 val PER: 0.0580 2025-09-16 04:15:54,957: t15.2023.12.03 val PER: 0.0609 2025-09-16 04:15:54,957: t15.2023.12.08 val PER: 0.0453 2025-09-16 04:15:54,957: t15.2023.12.10 val PER: 0.0434 2025-09-16 04:15:54,957: t15.2023.12.17 val PER: 0.0863 2025-09-16 04:15:54,958: t15.2023.12.29 val PER: 0.0837 2025-09-16 04:15:54,958: t15.2024.02.25 val PER: 0.0941 2025-09-16 04:15:54,958: t15.2024.03.08 val PER: 0.1721 2025-09-16 04:15:54,958: t15.2024.03.15 val PER: 0.1682 2025-09-16 04:15:54,958: t15.2024.03.17 val PER: 0.0802 2025-09-16 04:15:54,958: t15.2024.05.10 val PER: 0.1174 2025-09-16 04:15:54,958: t15.2024.06.14 val PER: 0.1435 2025-09-16 04:15:54,958: t15.2024.07.19 val PER: 0.1727 2025-09-16 04:15:54,958: t15.2024.07.21 val PER: 0.0655 2025-09-16 04:15:54,958: t15.2024.07.28 val PER: 0.0860 2025-09-16 04:15:54,958: t15.2025.01.10 val PER: 0.2782 2025-09-16 04:15:54,958: t15.2025.01.12 val PER: 0.0970 2025-09-16 04:15:54,958: t15.2025.03.14 val PER: 0.2929 2025-09-16 04:15:54,958: t15.2025.03.16 val PER: 0.1427 2025-09-16 04:15:54,958: t15.2025.03.30 val PER: 0.2437 2025-09-16 04:15:54,958: t15.2025.04.13 val PER: 0.2254 2025-09-16 04:15:54,958: New best test PER 0.1167 --> 0.1157 2025-09-16 04:15:54,958: Checkpointing model 2025-09-16 04:15:56,234: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 04:16:24,246: Train batch 40200: loss: 0.13 grad norm: 12.00 time: 0.138 2025-09-16 04:16:57,288: Train batch 40400: loss: 0.10 grad norm: 5.63 time: 0.132 2025-09-16 04:17:29,919: Train batch 40600: loss: 0.14 grad norm: 6.76 time: 0.149 2025-09-16 04:18:03,551: Train batch 40800: loss: 0.01 grad norm: 1.94 time: 0.116 2025-09-16 04:18:36,411: Train batch 41000: loss: 0.12 grad norm: 7.01 time: 0.113 2025-09-16 04:19:10,292: Train batch 41200: loss: 0.08 grad norm: 5.39 time: 0.130 2025-09-16 04:19:44,095: Train batch 41400: loss: 0.06 grad norm: 4.75 time: 0.173 2025-09-16 04:20:17,227: Train batch 41600: loss: 0.02 grad norm: 1.18 time: 0.178 2025-09-16 04:20:49,498: Train batch 41800: loss: 0.08 grad norm: 8.56 time: 0.115 2025-09-16 04:21:21,090: Train batch 42000: loss: 0.02 grad norm: 1.17 time: 0.132 2025-09-16 04:21:21,090: Running test after training batch: 42000 2025-09-16 04:21:31,487: Val batch 42000: PER (avg): 0.1129 CTC Loss (avg): 26.9547 time: 10.396 2025-09-16 04:21:31,487: t15.2023.08.13 val PER: 0.0988 2025-09-16 04:21:31,487: t15.2023.08.18 val PER: 0.0805 2025-09-16 04:21:31,487: t15.2023.08.20 val PER: 0.0683 2025-09-16 04:21:31,487: t15.2023.08.25 val PER: 0.0843 2025-09-16 04:21:31,487: t15.2023.08.27 val PER: 0.1768 2025-09-16 04:21:31,487: t15.2023.09.01 val PER: 0.0560 2025-09-16 04:21:31,487: t15.2023.09.03 val PER: 0.1140 2025-09-16 04:21:31,488: t15.2023.09.24 val PER: 0.0995 2025-09-16 04:21:31,488: t15.2023.09.29 val PER: 0.1034 2025-09-16 04:21:31,488: t15.2023.10.01 val PER: 0.1420 2025-09-16 04:21:31,488: t15.2023.10.06 val PER: 0.0646 2025-09-16 04:21:31,488: t15.2023.10.08 val PER: 0.2030 2025-09-16 04:21:31,488: t15.2023.10.13 val PER: 0.1800 2025-09-16 04:21:31,488: t15.2023.10.15 val PER: 0.1094 2025-09-16 04:21:31,488: t15.2023.10.20 val PER: 0.1913 2025-09-16 04:21:31,488: t15.2023.10.22 val PER: 0.1058 2025-09-16 04:21:31,488: t15.2023.11.03 val PER: 0.1588 2025-09-16 04:21:31,488: t15.2023.11.04 val PER: 0.0000 2025-09-16 04:21:31,488: t15.2023.11.17 val PER: 0.0249 2025-09-16 04:21:31,488: t15.2023.11.19 val PER: 0.0120 2025-09-16 04:21:31,488: t15.2023.11.26 val PER: 0.0543 2025-09-16 04:21:31,488: t15.2023.12.03 val PER: 0.0557 2025-09-16 04:21:31,488: t15.2023.12.08 val PER: 0.0340 2025-09-16 04:21:31,488: t15.2023.12.10 val PER: 0.0329 2025-09-16 04:21:31,488: t15.2023.12.17 val PER: 0.0956 2025-09-16 04:21:31,488: t15.2023.12.29 val PER: 0.0748 2025-09-16 04:21:31,489: t15.2024.02.25 val PER: 0.0801 2025-09-16 04:21:31,489: t15.2024.03.08 val PER: 0.1764 2025-09-16 04:21:31,489: t15.2024.03.15 val PER: 0.1745 2025-09-16 04:21:31,489: t15.2024.03.17 val PER: 0.0865 2025-09-16 04:21:31,489: t15.2024.05.10 val PER: 0.1100 2025-09-16 04:21:31,489: t15.2024.06.14 val PER: 0.1120 2025-09-16 04:21:31,489: t15.2024.07.19 val PER: 0.1846 2025-09-16 04:21:31,489: t15.2024.07.21 val PER: 0.0572 2025-09-16 04:21:31,489: t15.2024.07.28 val PER: 0.0882 2025-09-16 04:21:31,489: t15.2025.01.10 val PER: 0.2590 2025-09-16 04:21:31,489: t15.2025.01.12 val PER: 0.0939 2025-09-16 04:21:31,489: t15.2025.03.14 val PER: 0.2766 2025-09-16 04:21:31,489: t15.2025.03.16 val PER: 0.1505 2025-09-16 04:21:31,489: t15.2025.03.30 val PER: 0.2483 2025-09-16 04:21:31,489: t15.2025.04.13 val PER: 0.2083 2025-09-16 04:21:31,489: New best test PER 0.1157 --> 0.1129 2025-09-16 04:21:31,489: Checkpointing model 2025-09-16 04:21:32,777: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 04:22:01,170: Train batch 42200: loss: 0.19 grad norm: 3.55 time: 0.112 2025-09-16 04:22:34,648: Train batch 42400: loss: 0.05 grad norm: 2.47 time: 0.099 2025-09-16 04:23:08,522: Train batch 42600: loss: 0.03 grad norm: 2.15 time: 0.169 2025-09-16 04:23:42,012: Train batch 42800: loss: 0.02 grad norm: 1.95 time: 0.136 2025-09-16 04:24:14,599: Train batch 43000: loss: 0.18 grad norm: 8.84 time: 0.123 2025-09-16 04:24:48,448: Train batch 43200: loss: 0.05 grad norm: 4.28 time: 0.159 2025-09-16 04:25:21,553: Train batch 43400: loss: 0.03 grad norm: 1.90 time: 0.134 2025-09-16 04:25:55,061: Train batch 43600: loss: 0.04 grad norm: 2.57 time: 0.156 2025-09-16 04:26:28,616: Train batch 43800: loss: 0.01 grad norm: 1.08 time: 0.154 2025-09-16 04:27:02,049: Train batch 44000: loss: 0.06 grad norm: 3.99 time: 0.165 2025-09-16 04:27:02,050: Running test after training batch: 44000 2025-09-16 04:27:12,417: Val batch 44000: PER (avg): 0.1133 CTC Loss (avg): 26.7520 time: 10.367 2025-09-16 04:27:12,418: t15.2023.08.13 val PER: 0.0821 2025-09-16 04:27:12,418: t15.2023.08.18 val PER: 0.0780 2025-09-16 04:27:12,418: t15.2023.08.20 val PER: 0.0699 2025-09-16 04:27:12,418: t15.2023.08.25 val PER: 0.0813 2025-09-16 04:27:12,418: t15.2023.08.27 val PER: 0.1801 2025-09-16 04:27:12,418: t15.2023.09.01 val PER: 0.0544 2025-09-16 04:27:12,418: t15.2023.09.03 val PER: 0.1200 2025-09-16 04:27:12,418: t15.2023.09.24 val PER: 0.1019 2025-09-16 04:27:12,418: t15.2023.09.29 val PER: 0.1117 2025-09-16 04:27:12,418: t15.2023.10.01 val PER: 0.1493 2025-09-16 04:27:12,418: t15.2023.10.06 val PER: 0.0624 2025-09-16 04:27:12,418: t15.2023.10.08 val PER: 0.1922 2025-09-16 04:27:12,418: t15.2023.10.13 val PER: 0.1885 2025-09-16 04:27:12,418: t15.2023.10.15 val PER: 0.1173 2025-09-16 04:27:12,418: t15.2023.10.20 val PER: 0.1711 2025-09-16 04:27:12,419: t15.2023.10.22 val PER: 0.1002 2025-09-16 04:27:12,419: t15.2023.11.03 val PER: 0.1669 2025-09-16 04:27:12,419: t15.2023.11.04 val PER: 0.0068 2025-09-16 04:27:12,419: t15.2023.11.17 val PER: 0.0187 2025-09-16 04:27:12,419: t15.2023.11.19 val PER: 0.0180 2025-09-16 04:27:12,419: t15.2023.11.26 val PER: 0.0601 2025-09-16 04:27:12,419: t15.2023.12.03 val PER: 0.0630 2025-09-16 04:27:12,419: t15.2023.12.08 val PER: 0.0419 2025-09-16 04:27:12,419: t15.2023.12.10 val PER: 0.0420 2025-09-16 04:27:12,419: t15.2023.12.17 val PER: 0.0884 2025-09-16 04:27:12,419: t15.2023.12.29 val PER: 0.0789 2025-09-16 04:27:12,419: t15.2024.02.25 val PER: 0.0801 2025-09-16 04:27:12,419: t15.2024.03.08 val PER: 0.1735 2025-09-16 04:27:12,419: t15.2024.03.15 val PER: 0.1714 2025-09-16 04:27:12,419: t15.2024.03.17 val PER: 0.0823 2025-09-16 04:27:12,419: t15.2024.05.10 val PER: 0.1025 2025-09-16 04:27:12,419: t15.2024.06.14 val PER: 0.1215 2025-09-16 04:27:12,419: t15.2024.07.19 val PER: 0.1727 2025-09-16 04:27:12,419: t15.2024.07.21 val PER: 0.0586 2025-09-16 04:27:12,419: t15.2024.07.28 val PER: 0.0875 2025-09-16 04:27:12,420: t15.2025.01.10 val PER: 0.2562 2025-09-16 04:27:12,420: t15.2025.01.12 val PER: 0.0924 2025-09-16 04:27:12,420: t15.2025.03.14 val PER: 0.2766 2025-09-16 04:27:12,420: t15.2025.03.16 val PER: 0.1545 2025-09-16 04:27:12,420: t15.2025.03.30 val PER: 0.2391 2025-09-16 04:27:12,420: t15.2025.04.13 val PER: 0.1997 2025-09-16 04:27:40,458: Train batch 44200: loss: 0.29 grad norm: 5.36 time: 0.140 2025-09-16 04:28:13,662: Train batch 44400: loss: 0.04 grad norm: 3.82 time: 0.157 2025-09-16 04:28:46,360: Train batch 44600: loss: 0.01 grad norm: 0.64 time: 0.117 2025-09-16 04:29:19,929: Train batch 44800: loss: 0.03 grad norm: 2.59 time: 0.168 2025-09-16 04:29:53,655: Train batch 45000: loss: 0.01 grad norm: 0.43 time: 0.120 2025-09-16 04:30:27,108: Train batch 45200: loss: 0.03 grad norm: 3.00 time: 0.126 2025-09-16 04:30:59,727: Train batch 45400: loss: 0.27 grad norm: 5.20 time: 0.150 2025-09-16 04:31:32,501: Train batch 45600: loss: 0.07 grad norm: 4.80 time: 0.123 2025-09-16 04:32:05,690: Train batch 45800: loss: 0.02 grad norm: 1.46 time: 0.128 2025-09-16 04:32:39,891: Train batch 46000: loss: 0.01 grad norm: 2.07 time: 0.145 2025-09-16 04:32:39,892: Running test after training batch: 46000 2025-09-16 04:32:50,510: Val batch 46000: PER (avg): 0.1130 CTC Loss (avg): 27.0602 time: 10.618 2025-09-16 04:32:50,510: t15.2023.08.13 val PER: 0.0832 2025-09-16 04:32:50,510: t15.2023.08.18 val PER: 0.0863 2025-09-16 04:32:50,510: t15.2023.08.20 val PER: 0.0651 2025-09-16 04:32:50,511: t15.2023.08.25 val PER: 0.0964 2025-09-16 04:32:50,511: t15.2023.08.27 val PER: 0.1656 2025-09-16 04:32:50,511: t15.2023.09.01 val PER: 0.0487 2025-09-16 04:32:50,511: t15.2023.09.03 val PER: 0.1223 2025-09-16 04:32:50,511: t15.2023.09.24 val PER: 0.0947 2025-09-16 04:32:50,511: t15.2023.09.29 val PER: 0.1027 2025-09-16 04:32:50,511: t15.2023.10.01 val PER: 0.1473 2025-09-16 04:32:50,511: t15.2023.10.06 val PER: 0.0667 2025-09-16 04:32:50,511: t15.2023.10.08 val PER: 0.1949 2025-09-16 04:32:50,511: t15.2023.10.13 val PER: 0.1777 2025-09-16 04:32:50,511: t15.2023.10.15 val PER: 0.1121 2025-09-16 04:32:50,511: t15.2023.10.20 val PER: 0.1611 2025-09-16 04:32:50,511: t15.2023.10.22 val PER: 0.1013 2025-09-16 04:32:50,511: t15.2023.11.03 val PER: 0.1628 2025-09-16 04:32:50,511: t15.2023.11.04 val PER: 0.0034 2025-09-16 04:32:50,511: t15.2023.11.17 val PER: 0.0264 2025-09-16 04:32:50,511: t15.2023.11.19 val PER: 0.0140 2025-09-16 04:32:50,511: t15.2023.11.26 val PER: 0.0630 2025-09-16 04:32:50,511: t15.2023.12.03 val PER: 0.0578 2025-09-16 04:32:50,511: t15.2023.12.08 val PER: 0.0439 2025-09-16 04:32:50,512: t15.2023.12.10 val PER: 0.0473 2025-09-16 04:32:50,512: t15.2023.12.17 val PER: 0.0811 2025-09-16 04:32:50,512: t15.2023.12.29 val PER: 0.0817 2025-09-16 04:32:50,512: t15.2024.02.25 val PER: 0.0857 2025-09-16 04:32:50,512: t15.2024.03.08 val PER: 0.1849 2025-09-16 04:32:50,512: t15.2024.03.15 val PER: 0.1714 2025-09-16 04:32:50,512: t15.2024.03.17 val PER: 0.0816 2025-09-16 04:32:50,512: t15.2024.05.10 val PER: 0.1352 2025-09-16 04:32:50,512: t15.2024.06.14 val PER: 0.1120 2025-09-16 04:32:50,512: t15.2024.07.19 val PER: 0.1628 2025-09-16 04:32:50,512: t15.2024.07.21 val PER: 0.0538 2025-09-16 04:32:50,512: t15.2024.07.28 val PER: 0.0853 2025-09-16 04:32:50,512: t15.2025.01.10 val PER: 0.2645 2025-09-16 04:32:50,512: t15.2025.01.12 val PER: 0.0993 2025-09-16 04:32:50,512: t15.2025.03.14 val PER: 0.2825 2025-09-16 04:32:50,512: t15.2025.03.16 val PER: 0.1584 2025-09-16 04:32:50,512: t15.2025.03.30 val PER: 0.2333 2025-09-16 04:32:50,512: t15.2025.04.13 val PER: 0.2111 2025-09-16 04:33:18,409: Train batch 46200: loss: 0.01 grad norm: 0.67 time: 0.163 2025-09-16 04:33:51,829: Train batch 46400: loss: 0.01 grad norm: 0.51 time: 0.131 2025-09-16 04:34:25,747: Train batch 46600: loss: 0.01 grad norm: 1.22 time: 0.134 2025-09-16 04:34:58,737: Train batch 46800: loss: 0.02 grad norm: 2.25 time: 0.116 2025-09-16 04:35:31,833: Train batch 47000: loss: 0.01 grad norm: 0.93 time: 0.131 2025-09-16 04:36:04,819: Train batch 47200: loss: 0.02 grad norm: 1.32 time: 0.135 2025-09-16 04:36:37,999: Train batch 47400: loss: 0.01 grad norm: 1.13 time: 0.130 2025-09-16 04:37:11,870: Train batch 47600: loss: 0.14 grad norm: 7.83 time: 0.155 2025-09-16 04:37:45,629: Train batch 47800: loss: 0.03 grad norm: 5.38 time: 0.116 2025-09-16 04:38:19,000: Train batch 48000: loss: 0.01 grad norm: 0.46 time: 0.161 2025-09-16 04:38:19,000: Running test after training batch: 48000 2025-09-16 04:38:29,813: Val batch 48000: PER (avg): 0.1134 CTC Loss (avg): 27.7835 time: 10.813 2025-09-16 04:38:29,813: t15.2023.08.13 val PER: 0.0852 2025-09-16 04:38:29,813: t15.2023.08.18 val PER: 0.0821 2025-09-16 04:38:29,813: t15.2023.08.20 val PER: 0.0643 2025-09-16 04:38:29,814: t15.2023.08.25 val PER: 0.0889 2025-09-16 04:38:29,814: t15.2023.08.27 val PER: 0.1688 2025-09-16 04:38:29,814: t15.2023.09.01 val PER: 0.0544 2025-09-16 04:38:29,814: t15.2023.09.03 val PER: 0.1283 2025-09-16 04:38:29,814: t15.2023.09.24 val PER: 0.0995 2025-09-16 04:38:29,814: t15.2023.09.29 val PER: 0.1117 2025-09-16 04:38:29,814: t15.2023.10.01 val PER: 0.1413 2025-09-16 04:38:29,814: t15.2023.10.06 val PER: 0.0721 2025-09-16 04:38:29,814: t15.2023.10.08 val PER: 0.2070 2025-09-16 04:38:29,814: t15.2023.10.13 val PER: 0.1753 2025-09-16 04:38:29,814: t15.2023.10.15 val PER: 0.1167 2025-09-16 04:38:29,814: t15.2023.10.20 val PER: 0.1812 2025-09-16 04:38:29,814: t15.2023.10.22 val PER: 0.1024 2025-09-16 04:38:29,814: t15.2023.11.03 val PER: 0.1655 2025-09-16 04:38:29,814: t15.2023.11.04 val PER: 0.0000 2025-09-16 04:38:29,814: t15.2023.11.17 val PER: 0.0218 2025-09-16 04:38:29,814: t15.2023.11.19 val PER: 0.0100 2025-09-16 04:38:29,814: t15.2023.11.26 val PER: 0.0572 2025-09-16 04:38:29,814: t15.2023.12.03 val PER: 0.0704 2025-09-16 04:38:29,815: t15.2023.12.08 val PER: 0.0439 2025-09-16 04:38:29,815: t15.2023.12.10 val PER: 0.0473 2025-09-16 04:38:29,815: t15.2023.12.17 val PER: 0.0946 2025-09-16 04:38:29,815: t15.2023.12.29 val PER: 0.0830 2025-09-16 04:38:29,815: t15.2024.02.25 val PER: 0.0927 2025-09-16 04:38:29,815: t15.2024.03.08 val PER: 0.1778 2025-09-16 04:38:29,815: t15.2024.03.15 val PER: 0.1614 2025-09-16 04:38:29,815: t15.2024.03.17 val PER: 0.0774 2025-09-16 04:38:29,815: t15.2024.05.10 val PER: 0.1189 2025-09-16 04:38:29,815: t15.2024.06.14 val PER: 0.1104 2025-09-16 04:38:29,815: t15.2024.07.19 val PER: 0.1707 2025-09-16 04:38:29,815: t15.2024.07.21 val PER: 0.0614 2025-09-16 04:38:29,815: t15.2024.07.28 val PER: 0.0868 2025-09-16 04:38:29,815: t15.2025.01.10 val PER: 0.2631 2025-09-16 04:38:29,815: t15.2025.01.12 val PER: 0.0839 2025-09-16 04:38:29,815: t15.2025.03.14 val PER: 0.2707 2025-09-16 04:38:29,815: t15.2025.03.16 val PER: 0.1558 2025-09-16 04:38:29,815: t15.2025.03.30 val PER: 0.2379 2025-09-16 04:38:29,815: t15.2025.04.13 val PER: 0.2054 2025-09-16 04:38:58,127: Train batch 48200: loss: 0.01 grad norm: 0.67 time: 0.146 2025-09-16 04:39:30,985: Train batch 48400: loss: 0.00 grad norm: 0.25 time: 0.157 2025-09-16 04:40:04,570: Train batch 48600: loss: 0.02 grad norm: 1.15 time: 0.138 2025-09-16 04:40:38,765: Train batch 48800: loss: 0.02 grad norm: 0.86 time: 0.111 2025-09-16 04:41:11,313: Train batch 49000: loss: 0.21 grad norm: 11.50 time: 0.104 2025-09-16 04:41:45,280: Train batch 49200: loss: 0.05 grad norm: 2.14 time: 0.114 2025-09-16 04:42:18,602: Train batch 49400: loss: 0.02 grad norm: 2.38 time: 0.152 2025-09-16 04:42:52,016: Train batch 49600: loss: 0.06 grad norm: 4.95 time: 0.144 2025-09-16 04:43:25,077: Train batch 49800: loss: 0.02 grad norm: 1.62 time: 0.099 2025-09-16 04:43:58,647: Train batch 50000: loss: 0.05 grad norm: 5.03 time: 0.131 2025-09-16 04:43:58,647: Running test after training batch: 50000 2025-09-16 04:44:09,510: Val batch 50000: PER (avg): 0.1125 CTC Loss (avg): 27.6145 time: 10.862 2025-09-16 04:44:09,510: t15.2023.08.13 val PER: 0.0800 2025-09-16 04:44:09,510: t15.2023.08.18 val PER: 0.0763 2025-09-16 04:44:09,510: t15.2023.08.20 val PER: 0.0572 2025-09-16 04:44:09,510: t15.2023.08.25 val PER: 0.0798 2025-09-16 04:44:09,510: t15.2023.08.27 val PER: 0.1768 2025-09-16 04:44:09,510: t15.2023.09.01 val PER: 0.0528 2025-09-16 04:44:09,510: t15.2023.09.03 val PER: 0.1200 2025-09-16 04:44:09,510: t15.2023.09.24 val PER: 0.0983 2025-09-16 04:44:09,510: t15.2023.09.29 val PER: 0.1066 2025-09-16 04:44:09,510: t15.2023.10.01 val PER: 0.1552 2025-09-16 04:44:09,511: t15.2023.10.06 val PER: 0.0657 2025-09-16 04:44:09,511: t15.2023.10.08 val PER: 0.2084 2025-09-16 04:44:09,511: t15.2023.10.13 val PER: 0.1753 2025-09-16 04:44:09,511: t15.2023.10.15 val PER: 0.1147 2025-09-16 04:44:09,511: t15.2023.10.20 val PER: 0.1913 2025-09-16 04:44:09,511: t15.2023.10.22 val PER: 0.1002 2025-09-16 04:44:09,511: t15.2023.11.03 val PER: 0.1682 2025-09-16 04:44:09,511: t15.2023.11.04 val PER: 0.0102 2025-09-16 04:44:09,511: t15.2023.11.17 val PER: 0.0249 2025-09-16 04:44:09,511: t15.2023.11.19 val PER: 0.0200 2025-09-16 04:44:09,511: t15.2023.11.26 val PER: 0.0558 2025-09-16 04:44:09,511: t15.2023.12.03 val PER: 0.0651 2025-09-16 04:44:09,511: t15.2023.12.08 val PER: 0.0486 2025-09-16 04:44:09,511: t15.2023.12.10 val PER: 0.0460 2025-09-16 04:44:09,511: t15.2023.12.17 val PER: 0.0967 2025-09-16 04:44:09,511: t15.2023.12.29 val PER: 0.0728 2025-09-16 04:44:09,511: t15.2024.02.25 val PER: 0.0815 2025-09-16 04:44:09,511: t15.2024.03.08 val PER: 0.1807 2025-09-16 04:44:09,511: t15.2024.03.15 val PER: 0.1532 2025-09-16 04:44:09,512: t15.2024.03.17 val PER: 0.0767 2025-09-16 04:44:09,512: t15.2024.05.10 val PER: 0.1308 2025-09-16 04:44:09,512: t15.2024.06.14 val PER: 0.1151 2025-09-16 04:44:09,512: t15.2024.07.19 val PER: 0.1648 2025-09-16 04:44:09,512: t15.2024.07.21 val PER: 0.0628 2025-09-16 04:44:09,512: t15.2024.07.28 val PER: 0.0956 2025-09-16 04:44:09,512: t15.2025.01.10 val PER: 0.2672 2025-09-16 04:44:09,512: t15.2025.01.12 val PER: 0.0885 2025-09-16 04:44:09,512: t15.2025.03.14 val PER: 0.2811 2025-09-16 04:44:09,512: t15.2025.03.16 val PER: 0.1414 2025-09-16 04:44:09,512: t15.2025.03.30 val PER: 0.2310 2025-09-16 04:44:09,512: t15.2025.04.13 val PER: 0.1997 2025-09-16 04:44:09,512: New best test PER 0.1129 --> 0.1125 2025-09-16 04:44:09,512: Checkpointing model 2025-09-16 04:44:10,784: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 04:44:38,112: Train batch 50200: loss: 0.04 grad norm: 9.85 time: 0.158 2025-09-16 04:45:10,189: Train batch 50400: loss: 0.02 grad norm: 1.29 time: 0.115 2025-09-16 04:45:43,113: Train batch 50600: loss: 0.07 grad norm: 6.65 time: 0.116 2025-09-16 04:46:15,820: Train batch 50800: loss: 0.07 grad norm: 2.25 time: 0.122 2025-09-16 04:46:49,838: Train batch 51000: loss: 0.03 grad norm: 3.01 time: 0.168 2025-09-16 04:47:22,467: Train batch 51200: loss: 0.03 grad norm: 1.71 time: 0.155 2025-09-16 04:47:54,622: Train batch 51400: loss: 0.04 grad norm: 3.06 time: 0.102 2025-09-16 04:48:27,898: Train batch 51600: loss: 0.05 grad norm: 4.57 time: 0.164 2025-09-16 04:49:00,498: Train batch 51800: loss: 0.04 grad norm: 3.32 time: 0.113 2025-09-16 04:49:33,627: Train batch 52000: loss: 0.01 grad norm: 0.61 time: 0.102 2025-09-16 04:49:33,627: Running test after training batch: 52000 2025-09-16 04:49:44,496: Val batch 52000: PER (avg): 0.1123 CTC Loss (avg): 27.8901 time: 10.868 2025-09-16 04:49:44,496: t15.2023.08.13 val PER: 0.0842 2025-09-16 04:49:44,496: t15.2023.08.18 val PER: 0.0830 2025-09-16 04:49:44,496: t15.2023.08.20 val PER: 0.0651 2025-09-16 04:49:44,496: t15.2023.08.25 val PER: 0.0994 2025-09-16 04:49:44,496: t15.2023.08.27 val PER: 0.1640 2025-09-16 04:49:44,496: t15.2023.09.01 val PER: 0.0576 2025-09-16 04:49:44,496: t15.2023.09.03 val PER: 0.1200 2025-09-16 04:49:44,496: t15.2023.09.24 val PER: 0.0971 2025-09-16 04:49:44,496: t15.2023.09.29 val PER: 0.1053 2025-09-16 04:49:44,496: t15.2023.10.01 val PER: 0.1413 2025-09-16 04:49:44,496: t15.2023.10.06 val PER: 0.0592 2025-09-16 04:49:44,496: t15.2023.10.08 val PER: 0.1935 2025-09-16 04:49:44,497: t15.2023.10.13 val PER: 0.1707 2025-09-16 04:49:44,497: t15.2023.10.15 val PER: 0.1121 2025-09-16 04:49:44,497: t15.2023.10.20 val PER: 0.1779 2025-09-16 04:49:44,497: t15.2023.10.22 val PER: 0.0991 2025-09-16 04:49:44,497: t15.2023.11.03 val PER: 0.1588 2025-09-16 04:49:44,497: t15.2023.11.04 val PER: 0.0137 2025-09-16 04:49:44,497: t15.2023.11.17 val PER: 0.0249 2025-09-16 04:49:44,497: t15.2023.11.19 val PER: 0.0140 2025-09-16 04:49:44,497: t15.2023.11.26 val PER: 0.0638 2025-09-16 04:49:44,497: t15.2023.12.03 val PER: 0.0672 2025-09-16 04:49:44,497: t15.2023.12.08 val PER: 0.0393 2025-09-16 04:49:44,497: t15.2023.12.10 val PER: 0.0434 2025-09-16 04:49:44,497: t15.2023.12.17 val PER: 0.1154 2025-09-16 04:49:44,497: t15.2023.12.29 val PER: 0.0741 2025-09-16 04:49:44,497: t15.2024.02.25 val PER: 0.0927 2025-09-16 04:49:44,497: t15.2024.03.08 val PER: 0.1821 2025-09-16 04:49:44,497: t15.2024.03.15 val PER: 0.1570 2025-09-16 04:49:44,497: t15.2024.03.17 val PER: 0.0816 2025-09-16 04:49:44,497: t15.2024.05.10 val PER: 0.1426 2025-09-16 04:49:44,497: t15.2024.06.14 val PER: 0.1151 2025-09-16 04:49:44,498: t15.2024.07.19 val PER: 0.1740 2025-09-16 04:49:44,498: t15.2024.07.21 val PER: 0.0607 2025-09-16 04:49:44,498: t15.2024.07.28 val PER: 0.0949 2025-09-16 04:49:44,498: t15.2025.01.10 val PER: 0.2438 2025-09-16 04:49:44,498: t15.2025.01.12 val PER: 0.0816 2025-09-16 04:49:44,498: t15.2025.03.14 val PER: 0.2751 2025-09-16 04:49:44,498: t15.2025.03.16 val PER: 0.1479 2025-09-16 04:49:44,498: t15.2025.03.30 val PER: 0.2230 2025-09-16 04:49:44,498: t15.2025.04.13 val PER: 0.2054 2025-09-16 04:49:44,498: New best test PER 0.1125 --> 0.1123 2025-09-16 04:49:44,498: Checkpointing model 2025-09-16 04:49:45,909: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 04:50:13,878: Train batch 52200: loss: 0.03 grad norm: 2.44 time: 0.097 2025-09-16 04:50:46,351: Train batch 52400: loss: 0.07 grad norm: 6.89 time: 0.135 2025-09-16 04:51:18,863: Train batch 52600: loss: 0.02 grad norm: 1.66 time: 0.151 2025-09-16 04:51:52,109: Train batch 52800: loss: 0.02 grad norm: 2.13 time: 0.130 2025-09-16 04:52:25,170: Train batch 53000: loss: 0.01 grad norm: 0.32 time: 0.121 2025-09-16 04:52:57,779: Train batch 53200: loss: 0.02 grad norm: 3.73 time: 0.131 2025-09-16 04:53:31,215: Train batch 53400: loss: 0.01 grad norm: 1.47 time: 0.136 2025-09-16 04:54:03,921: Train batch 53600: loss: 0.06 grad norm: 4.02 time: 0.126 2025-09-16 04:54:36,556: Train batch 53800: loss: 0.02 grad norm: 2.31 time: 0.161 2025-09-16 04:55:09,297: Train batch 54000: loss: 0.01 grad norm: 0.42 time: 0.134 2025-09-16 04:55:09,297: Running test after training batch: 54000 2025-09-16 04:55:20,224: Val batch 54000: PER (avg): 0.1127 CTC Loss (avg): 27.4180 time: 10.927 2025-09-16 04:55:20,224: t15.2023.08.13 val PER: 0.0800 2025-09-16 04:55:20,224: t15.2023.08.18 val PER: 0.0821 2025-09-16 04:55:20,224: t15.2023.08.20 val PER: 0.0620 2025-09-16 04:55:20,224: t15.2023.08.25 val PER: 0.0843 2025-09-16 04:55:20,224: t15.2023.08.27 val PER: 0.1608 2025-09-16 04:55:20,224: t15.2023.09.01 val PER: 0.0503 2025-09-16 04:55:20,224: t15.2023.09.03 val PER: 0.1247 2025-09-16 04:55:20,224: t15.2023.09.24 val PER: 0.1092 2025-09-16 04:55:20,225: t15.2023.09.29 val PER: 0.1034 2025-09-16 04:55:20,225: t15.2023.10.01 val PER: 0.1453 2025-09-16 04:55:20,225: t15.2023.10.06 val PER: 0.0635 2025-09-16 04:55:20,225: t15.2023.10.08 val PER: 0.1962 2025-09-16 04:55:20,225: t15.2023.10.13 val PER: 0.1668 2025-09-16 04:55:20,225: t15.2023.10.15 val PER: 0.1114 2025-09-16 04:55:20,225: t15.2023.10.20 val PER: 0.1644 2025-09-16 04:55:20,225: t15.2023.10.22 val PER: 0.0980 2025-09-16 04:55:20,225: t15.2023.11.03 val PER: 0.1655 2025-09-16 04:55:20,225: t15.2023.11.04 val PER: 0.0102 2025-09-16 04:55:20,225: t15.2023.11.17 val PER: 0.0264 2025-09-16 04:55:20,225: t15.2023.11.19 val PER: 0.0140 2025-09-16 04:55:20,225: t15.2023.11.26 val PER: 0.0572 2025-09-16 04:55:20,225: t15.2023.12.03 val PER: 0.0651 2025-09-16 04:55:20,225: t15.2023.12.08 val PER: 0.0413 2025-09-16 04:55:20,225: t15.2023.12.10 val PER: 0.0434 2025-09-16 04:55:20,226: t15.2023.12.17 val PER: 0.1091 2025-09-16 04:55:20,226: t15.2023.12.29 val PER: 0.0810 2025-09-16 04:55:20,226: t15.2024.02.25 val PER: 0.0899 2025-09-16 04:55:20,226: t15.2024.03.08 val PER: 0.1991 2025-09-16 04:55:20,226: t15.2024.03.15 val PER: 0.1620 2025-09-16 04:55:20,226: t15.2024.03.17 val PER: 0.0816 2025-09-16 04:55:20,226: t15.2024.05.10 val PER: 0.1382 2025-09-16 04:55:20,226: t15.2024.06.14 val PER: 0.1167 2025-09-16 04:55:20,226: t15.2024.07.19 val PER: 0.1714 2025-09-16 04:55:20,226: t15.2024.07.21 val PER: 0.0614 2025-09-16 04:55:20,226: t15.2024.07.28 val PER: 0.0801 2025-09-16 04:55:20,226: t15.2025.01.10 val PER: 0.2521 2025-09-16 04:55:20,226: t15.2025.01.12 val PER: 0.0824 2025-09-16 04:55:20,226: t15.2025.03.14 val PER: 0.3018 2025-09-16 04:55:20,226: t15.2025.03.16 val PER: 0.1466 2025-09-16 04:55:20,226: t15.2025.03.30 val PER: 0.2356 2025-09-16 04:55:20,226: t15.2025.04.13 val PER: 0.2054 2025-09-16 04:55:48,010: Train batch 54200: loss: 0.05 grad norm: 3.07 time: 0.118 2025-09-16 04:56:20,956: Train batch 54400: loss: 0.05 grad norm: 3.80 time: 0.141 2025-09-16 04:56:54,188: Train batch 54600: loss: 0.02 grad norm: 1.39 time: 0.125 2025-09-16 04:57:27,186: Train batch 54800: loss: 0.02 grad norm: 1.64 time: 0.116 2025-09-16 04:58:00,551: Train batch 55000: loss: 0.02 grad norm: 1.67 time: 0.110 2025-09-16 04:58:33,860: Train batch 55200: loss: 0.03 grad norm: 1.61 time: 0.145 2025-09-16 04:59:07,932: Train batch 55400: loss: 0.04 grad norm: 2.78 time: 0.140 2025-09-16 04:59:40,468: Train batch 55600: loss: 0.02 grad norm: 1.58 time: 0.154 2025-09-16 05:00:13,848: Train batch 55800: loss: 0.01 grad norm: 0.86 time: 0.124 2025-09-16 05:00:47,466: Train batch 56000: loss: 0.01 grad norm: 0.99 time: 0.125 2025-09-16 05:00:47,466: Running test after training batch: 56000 2025-09-16 05:00:57,949: Val batch 56000: PER (avg): 0.1130 CTC Loss (avg): 27.7827 time: 10.482 2025-09-16 05:00:57,949: t15.2023.08.13 val PER: 0.0790 2025-09-16 05:00:57,949: t15.2023.08.18 val PER: 0.0838 2025-09-16 05:00:57,949: t15.2023.08.20 val PER: 0.0620 2025-09-16 05:00:57,949: t15.2023.08.25 val PER: 0.0964 2025-09-16 05:00:57,949: t15.2023.08.27 val PER: 0.1720 2025-09-16 05:00:57,949: t15.2023.09.01 val PER: 0.0584 2025-09-16 05:00:57,949: t15.2023.09.03 val PER: 0.1342 2025-09-16 05:00:57,949: t15.2023.09.24 val PER: 0.0995 2025-09-16 05:00:57,950: t15.2023.09.29 val PER: 0.1059 2025-09-16 05:00:57,950: t15.2023.10.01 val PER: 0.1519 2025-09-16 05:00:57,950: t15.2023.10.06 val PER: 0.0743 2025-09-16 05:00:57,950: t15.2023.10.08 val PER: 0.1881 2025-09-16 05:00:57,950: t15.2023.10.13 val PER: 0.1660 2025-09-16 05:00:57,950: t15.2023.10.15 val PER: 0.1154 2025-09-16 05:00:57,950: t15.2023.10.20 val PER: 0.1913 2025-09-16 05:00:57,950: t15.2023.10.22 val PER: 0.0991 2025-09-16 05:00:57,950: t15.2023.11.03 val PER: 0.1642 2025-09-16 05:00:57,950: t15.2023.11.04 val PER: 0.0068 2025-09-16 05:00:57,950: t15.2023.11.17 val PER: 0.0233 2025-09-16 05:00:57,950: t15.2023.11.19 val PER: 0.0140 2025-09-16 05:00:57,950: t15.2023.11.26 val PER: 0.0594 2025-09-16 05:00:57,950: t15.2023.12.03 val PER: 0.0630 2025-09-16 05:00:57,950: t15.2023.12.08 val PER: 0.0433 2025-09-16 05:00:57,950: t15.2023.12.10 val PER: 0.0407 2025-09-16 05:00:57,950: t15.2023.12.17 val PER: 0.0915 2025-09-16 05:00:57,950: t15.2023.12.29 val PER: 0.0858 2025-09-16 05:00:57,950: t15.2024.02.25 val PER: 0.0913 2025-09-16 05:00:57,950: t15.2024.03.08 val PER: 0.1650 2025-09-16 05:00:57,951: t15.2024.03.15 val PER: 0.1695 2025-09-16 05:00:57,951: t15.2024.03.17 val PER: 0.0788 2025-09-16 05:00:57,951: t15.2024.05.10 val PER: 0.1263 2025-09-16 05:00:57,951: t15.2024.06.14 val PER: 0.1262 2025-09-16 05:00:57,951: t15.2024.07.19 val PER: 0.1773 2025-09-16 05:00:57,951: t15.2024.07.21 val PER: 0.0614 2025-09-16 05:00:57,951: t15.2024.07.28 val PER: 0.0816 2025-09-16 05:00:57,951: t15.2025.01.10 val PER: 0.2645 2025-09-16 05:00:57,951: t15.2025.01.12 val PER: 0.0808 2025-09-16 05:00:57,951: t15.2025.03.14 val PER: 0.2796 2025-09-16 05:00:57,951: t15.2025.03.16 val PER: 0.1387 2025-09-16 05:00:57,951: t15.2025.03.30 val PER: 0.2310 2025-09-16 05:00:57,951: t15.2025.04.13 val PER: 0.1983 2025-09-16 05:01:26,430: Train batch 56200: loss: 0.02 grad norm: 1.23 time: 0.140 2025-09-16 05:01:59,025: Train batch 56400: loss: 0.01 grad norm: 0.58 time: 0.154 2025-09-16 05:02:32,263: Train batch 56600: loss: 0.11 grad norm: 5.42 time: 0.112 2025-09-16 05:03:04,250: Train batch 56800: loss: 0.01 grad norm: 0.64 time: 0.097 2025-09-16 05:03:38,244: Train batch 57000: loss: 0.03 grad norm: 3.20 time: 0.136 2025-09-16 05:04:11,398: Train batch 57200: loss: 0.01 grad norm: 0.78 time: 0.116 2025-09-16 05:04:44,248: Train batch 57400: loss: 0.01 grad norm: 0.32 time: 0.106 2025-09-16 05:05:17,712: Train batch 57600: loss: 0.01 grad norm: 1.07 time: 0.115 2025-09-16 05:05:50,379: Train batch 57800: loss: 0.02 grad norm: 1.85 time: 0.125 2025-09-16 05:06:23,218: Train batch 58000: loss: 0.02 grad norm: 2.58 time: 0.115 2025-09-16 05:06:23,218: Running test after training batch: 58000 2025-09-16 05:06:33,608: Val batch 58000: PER (avg): 0.1135 CTC Loss (avg): 28.0092 time: 10.389 2025-09-16 05:06:33,608: t15.2023.08.13 val PER: 0.0873 2025-09-16 05:06:33,608: t15.2023.08.18 val PER: 0.0821 2025-09-16 05:06:33,608: t15.2023.08.20 val PER: 0.0643 2025-09-16 05:06:33,608: t15.2023.08.25 val PER: 0.0949 2025-09-16 05:06:33,608: t15.2023.08.27 val PER: 0.1752 2025-09-16 05:06:33,608: t15.2023.09.01 val PER: 0.0544 2025-09-16 05:06:33,609: t15.2023.09.03 val PER: 0.1259 2025-09-16 05:06:33,609: t15.2023.09.24 val PER: 0.0995 2025-09-16 05:06:33,609: t15.2023.09.29 val PER: 0.1008 2025-09-16 05:06:33,609: t15.2023.10.01 val PER: 0.1446 2025-09-16 05:06:33,609: t15.2023.10.06 val PER: 0.0614 2025-09-16 05:06:33,609: t15.2023.10.08 val PER: 0.1935 2025-09-16 05:06:33,609: t15.2023.10.13 val PER: 0.1676 2025-09-16 05:06:33,609: t15.2023.10.15 val PER: 0.1107 2025-09-16 05:06:33,609: t15.2023.10.20 val PER: 0.2013 2025-09-16 05:06:33,609: t15.2023.10.22 val PER: 0.1024 2025-09-16 05:06:33,609: t15.2023.11.03 val PER: 0.1676 2025-09-16 05:06:33,609: t15.2023.11.04 val PER: 0.0102 2025-09-16 05:06:33,609: t15.2023.11.17 val PER: 0.0233 2025-09-16 05:06:33,609: t15.2023.11.19 val PER: 0.0180 2025-09-16 05:06:33,609: t15.2023.11.26 val PER: 0.0638 2025-09-16 05:06:33,609: t15.2023.12.03 val PER: 0.0662 2025-09-16 05:06:33,609: t15.2023.12.08 val PER: 0.0499 2025-09-16 05:06:33,609: t15.2023.12.10 val PER: 0.0381 2025-09-16 05:06:33,609: t15.2023.12.17 val PER: 0.0967 2025-09-16 05:06:33,610: t15.2023.12.29 val PER: 0.0865 2025-09-16 05:06:33,610: t15.2024.02.25 val PER: 0.0871 2025-09-16 05:06:33,610: t15.2024.03.08 val PER: 0.1721 2025-09-16 05:06:33,610: t15.2024.03.15 val PER: 0.1645 2025-09-16 05:06:33,610: t15.2024.03.17 val PER: 0.0683 2025-09-16 05:06:33,610: t15.2024.05.10 val PER: 0.1278 2025-09-16 05:06:33,610: t15.2024.06.14 val PER: 0.1199 2025-09-16 05:06:33,610: t15.2024.07.19 val PER: 0.1793 2025-09-16 05:06:33,610: t15.2024.07.21 val PER: 0.0586 2025-09-16 05:06:33,610: t15.2024.07.28 val PER: 0.0882 2025-09-16 05:06:33,610: t15.2025.01.10 val PER: 0.2534 2025-09-16 05:06:33,610: t15.2025.01.12 val PER: 0.0870 2025-09-16 05:06:33,610: t15.2025.03.14 val PER: 0.2811 2025-09-16 05:06:33,610: t15.2025.03.16 val PER: 0.1518 2025-09-16 05:06:33,610: t15.2025.03.30 val PER: 0.2425 2025-09-16 05:06:33,610: t15.2025.04.13 val PER: 0.2140 2025-09-16 05:07:01,281: Train batch 58200: loss: 0.02 grad norm: 1.45 time: 0.114 2025-09-16 05:07:33,946: Train batch 58400: loss: 0.01 grad norm: 0.57 time: 0.152 2025-09-16 05:08:05,989: Train batch 58600: loss: 0.01 grad norm: 0.53 time: 0.157 2025-09-16 05:08:38,806: Train batch 58800: loss: 0.01 grad norm: 0.41 time: 0.102 2025-09-16 05:09:10,461: Train batch 59000: loss: 0.01 grad norm: 0.97 time: 0.154 2025-09-16 05:09:43,628: Train batch 59200: loss: 0.02 grad norm: 3.16 time: 0.131 2025-09-16 05:10:16,777: Train batch 59400: loss: 0.03 grad norm: 3.51 time: 0.124 2025-09-16 05:10:50,384: Train batch 59600: loss: 0.03 grad norm: 3.35 time: 0.152 2025-09-16 05:11:23,194: Train batch 59800: loss: 0.01 grad norm: 0.71 time: 0.143 2025-09-16 05:11:55,198: Train batch 60000: loss: 0.01 grad norm: 0.32 time: 0.150 2025-09-16 05:11:55,199: Running test after training batch: 60000 2025-09-16 05:12:06,176: Val batch 60000: PER (avg): 0.1114 CTC Loss (avg): 27.5786 time: 10.977 2025-09-16 05:12:06,177: t15.2023.08.13 val PER: 0.0800 2025-09-16 05:12:06,177: t15.2023.08.18 val PER: 0.0805 2025-09-16 05:12:06,177: t15.2023.08.20 val PER: 0.0612 2025-09-16 05:12:06,177: t15.2023.08.25 val PER: 0.0949 2025-09-16 05:12:06,177: t15.2023.08.27 val PER: 0.1833 2025-09-16 05:12:06,177: t15.2023.09.01 val PER: 0.0471 2025-09-16 05:12:06,177: t15.2023.09.03 val PER: 0.1093 2025-09-16 05:12:06,177: t15.2023.09.24 val PER: 0.0959 2025-09-16 05:12:06,177: t15.2023.09.29 val PER: 0.1015 2025-09-16 05:12:06,177: t15.2023.10.01 val PER: 0.1513 2025-09-16 05:12:06,177: t15.2023.10.06 val PER: 0.0614 2025-09-16 05:12:06,177: t15.2023.10.08 val PER: 0.1935 2025-09-16 05:12:06,177: t15.2023.10.13 val PER: 0.1707 2025-09-16 05:12:06,177: t15.2023.10.15 val PER: 0.1074 2025-09-16 05:12:06,177: t15.2023.10.20 val PER: 0.1779 2025-09-16 05:12:06,177: t15.2023.10.22 val PER: 0.1013 2025-09-16 05:12:06,177: t15.2023.11.03 val PER: 0.1642 2025-09-16 05:12:06,177: t15.2023.11.04 val PER: 0.0068 2025-09-16 05:12:06,178: t15.2023.11.17 val PER: 0.0218 2025-09-16 05:12:06,178: t15.2023.11.19 val PER: 0.0120 2025-09-16 05:12:06,178: t15.2023.11.26 val PER: 0.0594 2025-09-16 05:12:06,178: t15.2023.12.03 val PER: 0.0704 2025-09-16 05:12:06,178: t15.2023.12.08 val PER: 0.0419 2025-09-16 05:12:06,178: t15.2023.12.10 val PER: 0.0460 2025-09-16 05:12:06,178: t15.2023.12.17 val PER: 0.0925 2025-09-16 05:12:06,178: t15.2023.12.29 val PER: 0.0782 2025-09-16 05:12:06,178: t15.2024.02.25 val PER: 0.0857 2025-09-16 05:12:06,178: t15.2024.03.08 val PER: 0.1679 2025-09-16 05:12:06,178: t15.2024.03.15 val PER: 0.1670 2025-09-16 05:12:06,178: t15.2024.03.17 val PER: 0.0760 2025-09-16 05:12:06,178: t15.2024.05.10 val PER: 0.1456 2025-09-16 05:12:06,178: t15.2024.06.14 val PER: 0.1041 2025-09-16 05:12:06,178: t15.2024.07.19 val PER: 0.1760 2025-09-16 05:12:06,178: t15.2024.07.21 val PER: 0.0552 2025-09-16 05:12:06,178: t15.2024.07.28 val PER: 0.0919 2025-09-16 05:12:06,178: t15.2025.01.10 val PER: 0.2534 2025-09-16 05:12:06,178: t15.2025.01.12 val PER: 0.0893 2025-09-16 05:12:06,179: t15.2025.03.14 val PER: 0.2633 2025-09-16 05:12:06,179: t15.2025.03.16 val PER: 0.1505 2025-09-16 05:12:06,179: t15.2025.03.30 val PER: 0.2264 2025-09-16 05:12:06,179: t15.2025.04.13 val PER: 0.2083 2025-09-16 05:12:06,179: New best test PER 0.1123 --> 0.1114 2025-09-16 05:12:06,179: Checkpointing model 2025-09-16 05:12:07,499: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 05:12:35,038: Train batch 60200: loss: 0.04 grad norm: 3.54 time: 0.159 2025-09-16 05:13:07,104: Train batch 60400: loss: 0.02 grad norm: 2.00 time: 0.136 2025-09-16 05:13:40,132: Train batch 60600: loss: 0.02 grad norm: 1.15 time: 0.140 2025-09-16 05:14:12,971: Train batch 60800: loss: 0.01 grad norm: 0.70 time: 0.128 2025-09-16 05:14:46,171: Train batch 61000: loss: 0.01 grad norm: 0.72 time: 0.110 2025-09-16 05:15:18,731: Train batch 61200: loss: 0.01 grad norm: 0.29 time: 0.155 2025-09-16 05:15:52,809: Train batch 61400: loss: 0.00 grad norm: 0.16 time: 0.123 2025-09-16 05:16:26,513: Train batch 61600: loss: 0.03 grad norm: 6.25 time: 0.111 2025-09-16 05:17:00,201: Train batch 61800: loss: 0.01 grad norm: 0.67 time: 0.143 2025-09-16 05:17:32,452: Train batch 62000: loss: 0.01 grad norm: 0.63 time: 0.108 2025-09-16 05:17:32,452: Running test after training batch: 62000 2025-09-16 05:17:43,309: Val batch 62000: PER (avg): 0.1097 CTC Loss (avg): 26.6828 time: 10.857 2025-09-16 05:17:43,309: t15.2023.08.13 val PER: 0.0884 2025-09-16 05:17:43,309: t15.2023.08.18 val PER: 0.0754 2025-09-16 05:17:43,309: t15.2023.08.20 val PER: 0.0620 2025-09-16 05:17:43,309: t15.2023.08.25 val PER: 0.0919 2025-09-16 05:17:43,309: t15.2023.08.27 val PER: 0.1688 2025-09-16 05:17:43,309: t15.2023.09.01 val PER: 0.0536 2025-09-16 05:17:43,309: t15.2023.09.03 val PER: 0.1140 2025-09-16 05:17:43,310: t15.2023.09.24 val PER: 0.0983 2025-09-16 05:17:43,310: t15.2023.09.29 val PER: 0.1040 2025-09-16 05:17:43,310: t15.2023.10.01 val PER: 0.1407 2025-09-16 05:17:43,310: t15.2023.10.06 val PER: 0.0506 2025-09-16 05:17:43,310: t15.2023.10.08 val PER: 0.1962 2025-09-16 05:17:43,310: t15.2023.10.13 val PER: 0.1761 2025-09-16 05:17:43,310: t15.2023.10.15 val PER: 0.1134 2025-09-16 05:17:43,310: t15.2023.10.20 val PER: 0.1779 2025-09-16 05:17:43,310: t15.2023.10.22 val PER: 0.1058 2025-09-16 05:17:43,310: t15.2023.11.03 val PER: 0.1581 2025-09-16 05:17:43,310: t15.2023.11.04 val PER: 0.0068 2025-09-16 05:17:43,310: t15.2023.11.17 val PER: 0.0218 2025-09-16 05:17:43,310: t15.2023.11.19 val PER: 0.0140 2025-09-16 05:17:43,310: t15.2023.11.26 val PER: 0.0551 2025-09-16 05:17:43,310: t15.2023.12.03 val PER: 0.0672 2025-09-16 05:17:43,310: t15.2023.12.08 val PER: 0.0433 2025-09-16 05:17:43,310: t15.2023.12.10 val PER: 0.0486 2025-09-16 05:17:43,311: t15.2023.12.17 val PER: 0.0894 2025-09-16 05:17:43,311: t15.2023.12.29 val PER: 0.0714 2025-09-16 05:17:43,311: t15.2024.02.25 val PER: 0.0815 2025-09-16 05:17:43,311: t15.2024.03.08 val PER: 0.1536 2025-09-16 05:17:43,311: t15.2024.03.15 val PER: 0.1614 2025-09-16 05:17:43,311: t15.2024.03.17 val PER: 0.0802 2025-09-16 05:17:43,311: t15.2024.05.10 val PER: 0.1263 2025-09-16 05:17:43,311: t15.2024.06.14 val PER: 0.1104 2025-09-16 05:17:43,311: t15.2024.07.19 val PER: 0.1694 2025-09-16 05:17:43,311: t15.2024.07.21 val PER: 0.0552 2025-09-16 05:17:43,311: t15.2024.07.28 val PER: 0.0801 2025-09-16 05:17:43,311: t15.2025.01.10 val PER: 0.2534 2025-09-16 05:17:43,311: t15.2025.01.12 val PER: 0.0847 2025-09-16 05:17:43,311: t15.2025.03.14 val PER: 0.2737 2025-09-16 05:17:43,311: t15.2025.03.16 val PER: 0.1466 2025-09-16 05:17:43,311: t15.2025.03.30 val PER: 0.2218 2025-09-16 05:17:43,311: t15.2025.04.13 val PER: 0.2140 2025-09-16 05:17:43,312: New best test PER 0.1114 --> 0.1097 2025-09-16 05:17:43,312: Checkpointing model 2025-09-16 05:17:44,703: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 05:18:12,869: Train batch 62200: loss: 0.01 grad norm: 1.44 time: 0.176 2025-09-16 05:18:46,905: Train batch 62400: loss: 0.01 grad norm: 0.67 time: 0.148 2025-09-16 05:19:21,348: Train batch 62600: loss: 0.02 grad norm: 1.50 time: 0.096 2025-09-16 05:19:55,762: Train batch 62800: loss: 0.01 grad norm: 0.76 time: 0.122 2025-09-16 05:20:30,910: Train batch 63000: loss: 0.01 grad norm: 0.64 time: 0.114 2025-09-16 05:21:05,207: Train batch 63200: loss: 0.00 grad norm: 0.33 time: 0.125 2025-09-16 05:21:39,216: Train batch 63400: loss: 0.02 grad norm: 1.86 time: 0.125 2025-09-16 05:22:13,393: Train batch 63600: loss: 0.01 grad norm: 0.71 time: 0.106 2025-09-16 05:22:46,171: Train batch 63800: loss: 0.00 grad norm: 0.12 time: 0.153 2025-09-16 05:23:18,960: Train batch 64000: loss: 0.01 grad norm: 0.37 time: 0.148 2025-09-16 05:23:18,961: Running test after training batch: 64000 2025-09-16 05:23:30,135: Val batch 64000: PER (avg): 0.1104 CTC Loss (avg): 27.1472 time: 11.174 2025-09-16 05:23:30,135: t15.2023.08.13 val PER: 0.0915 2025-09-16 05:23:30,135: t15.2023.08.18 val PER: 0.0788 2025-09-16 05:23:30,135: t15.2023.08.20 val PER: 0.0627 2025-09-16 05:23:30,135: t15.2023.08.25 val PER: 0.0889 2025-09-16 05:23:30,136: t15.2023.08.27 val PER: 0.1801 2025-09-16 05:23:30,136: t15.2023.09.01 val PER: 0.0528 2025-09-16 05:23:30,136: t15.2023.09.03 val PER: 0.1200 2025-09-16 05:23:30,136: t15.2023.09.24 val PER: 0.0874 2025-09-16 05:23:30,136: t15.2023.09.29 val PER: 0.1072 2025-09-16 05:23:30,136: t15.2023.10.01 val PER: 0.1493 2025-09-16 05:23:30,136: t15.2023.10.06 val PER: 0.0571 2025-09-16 05:23:30,136: t15.2023.10.08 val PER: 0.1962 2025-09-16 05:23:30,136: t15.2023.10.13 val PER: 0.1668 2025-09-16 05:23:30,136: t15.2023.10.15 val PER: 0.1061 2025-09-16 05:23:30,136: t15.2023.10.20 val PER: 0.1779 2025-09-16 05:23:30,136: t15.2023.10.22 val PER: 0.1047 2025-09-16 05:23:30,136: t15.2023.11.03 val PER: 0.1554 2025-09-16 05:23:30,136: t15.2023.11.04 val PER: 0.0068 2025-09-16 05:23:30,136: t15.2023.11.17 val PER: 0.0202 2025-09-16 05:23:30,136: t15.2023.11.19 val PER: 0.0120 2025-09-16 05:23:30,137: t15.2023.11.26 val PER: 0.0514 2025-09-16 05:23:30,137: t15.2023.12.03 val PER: 0.0567 2025-09-16 05:23:30,137: t15.2023.12.08 val PER: 0.0406 2025-09-16 05:23:30,137: t15.2023.12.10 val PER: 0.0434 2025-09-16 05:23:30,137: t15.2023.12.17 val PER: 0.0873 2025-09-16 05:23:30,137: t15.2023.12.29 val PER: 0.0741 2025-09-16 05:23:30,137: t15.2024.02.25 val PER: 0.0857 2025-09-16 05:23:30,137: t15.2024.03.08 val PER: 0.1693 2025-09-16 05:23:30,137: t15.2024.03.15 val PER: 0.1645 2025-09-16 05:23:30,137: t15.2024.03.17 val PER: 0.0788 2025-09-16 05:23:30,137: t15.2024.05.10 val PER: 0.1308 2025-09-16 05:23:30,137: t15.2024.06.14 val PER: 0.1293 2025-09-16 05:23:30,137: t15.2024.07.19 val PER: 0.1767 2025-09-16 05:23:30,137: t15.2024.07.21 val PER: 0.0559 2025-09-16 05:23:30,137: t15.2024.07.28 val PER: 0.0787 2025-09-16 05:23:30,137: t15.2025.01.10 val PER: 0.2479 2025-09-16 05:23:30,137: t15.2025.01.12 val PER: 0.0901 2025-09-16 05:23:30,138: t15.2025.03.14 val PER: 0.2618 2025-09-16 05:23:30,138: t15.2025.03.16 val PER: 0.1466 2025-09-16 05:23:30,138: t15.2025.03.30 val PER: 0.2356 2025-09-16 05:23:30,138: t15.2025.04.13 val PER: 0.2154 2025-09-16 05:23:57,855: Train batch 64200: loss: 0.01 grad norm: 2.23 time: 0.127 2025-09-16 05:24:30,727: Train batch 64400: loss: 0.01 grad norm: 0.30 time: 0.158 2025-09-16 05:25:03,471: Train batch 64600: loss: 0.01 grad norm: 0.22 time: 0.173 2025-09-16 05:25:36,036: Train batch 64800: loss: 0.00 grad norm: 0.49 time: 0.103 2025-09-16 05:26:08,555: Train batch 65000: loss: 0.01 grad norm: 0.77 time: 0.126 2025-09-16 05:26:41,396: Train batch 65200: loss: 0.01 grad norm: 1.20 time: 0.129 2025-09-16 05:27:14,565: Train batch 65400: loss: 0.00 grad norm: 0.17 time: 0.099 2025-09-16 05:27:47,514: Train batch 65600: loss: 0.00 grad norm: 0.10 time: 0.113 2025-09-16 05:28:20,026: Train batch 65800: loss: 0.02 grad norm: 2.26 time: 0.150 2025-09-16 05:28:52,882: Train batch 66000: loss: 0.06 grad norm: 6.23 time: 0.159 2025-09-16 05:28:52,882: Running test after training batch: 66000 2025-09-16 05:29:03,595: Val batch 66000: PER (avg): 0.1100 CTC Loss (avg): 27.0369 time: 10.713 2025-09-16 05:29:03,596: t15.2023.08.13 val PER: 0.0842 2025-09-16 05:29:03,596: t15.2023.08.18 val PER: 0.0729 2025-09-16 05:29:03,596: t15.2023.08.20 val PER: 0.0612 2025-09-16 05:29:03,596: t15.2023.08.25 val PER: 0.0919 2025-09-16 05:29:03,596: t15.2023.08.27 val PER: 0.1672 2025-09-16 05:29:03,596: t15.2023.09.01 val PER: 0.0544 2025-09-16 05:29:03,596: t15.2023.09.03 val PER: 0.1164 2025-09-16 05:29:03,596: t15.2023.09.24 val PER: 0.0947 2025-09-16 05:29:03,596: t15.2023.09.29 val PER: 0.1021 2025-09-16 05:29:03,596: t15.2023.10.01 val PER: 0.1413 2025-09-16 05:29:03,596: t15.2023.10.06 val PER: 0.0571 2025-09-16 05:29:03,596: t15.2023.10.08 val PER: 0.1922 2025-09-16 05:29:03,596: t15.2023.10.13 val PER: 0.1715 2025-09-16 05:29:03,596: t15.2023.10.15 val PER: 0.1055 2025-09-16 05:29:03,596: t15.2023.10.20 val PER: 0.1812 2025-09-16 05:29:03,596: t15.2023.10.22 val PER: 0.1013 2025-09-16 05:29:03,596: t15.2023.11.03 val PER: 0.1635 2025-09-16 05:29:03,597: t15.2023.11.04 val PER: 0.0102 2025-09-16 05:29:03,597: t15.2023.11.17 val PER: 0.0218 2025-09-16 05:29:03,597: t15.2023.11.19 val PER: 0.0140 2025-09-16 05:29:03,597: t15.2023.11.26 val PER: 0.0536 2025-09-16 05:29:03,597: t15.2023.12.03 val PER: 0.0557 2025-09-16 05:29:03,597: t15.2023.12.08 val PER: 0.0419 2025-09-16 05:29:03,597: t15.2023.12.10 val PER: 0.0394 2025-09-16 05:29:03,597: t15.2023.12.17 val PER: 0.0894 2025-09-16 05:29:03,597: t15.2023.12.29 val PER: 0.0693 2025-09-16 05:29:03,597: t15.2024.02.25 val PER: 0.0815 2025-09-16 05:29:03,597: t15.2024.03.08 val PER: 0.1679 2025-09-16 05:29:03,597: t15.2024.03.15 val PER: 0.1639 2025-09-16 05:29:03,597: t15.2024.03.17 val PER: 0.0767 2025-09-16 05:29:03,597: t15.2024.05.10 val PER: 0.1322 2025-09-16 05:29:03,597: t15.2024.06.14 val PER: 0.1278 2025-09-16 05:29:03,597: t15.2024.07.19 val PER: 0.1800 2025-09-16 05:29:03,597: t15.2024.07.21 val PER: 0.0586 2025-09-16 05:29:03,597: t15.2024.07.28 val PER: 0.0853 2025-09-16 05:29:03,597: t15.2025.01.10 val PER: 0.2658 2025-09-16 05:29:03,597: t15.2025.01.12 val PER: 0.0808 2025-09-16 05:29:03,598: t15.2025.03.14 val PER: 0.2870 2025-09-16 05:29:03,598: t15.2025.03.16 val PER: 0.1335 2025-09-16 05:29:03,598: t15.2025.03.30 val PER: 0.2276 2025-09-16 05:29:03,598: t15.2025.04.13 val PER: 0.2111 2025-09-16 05:29:31,871: Train batch 66200: loss: 0.01 grad norm: 0.37 time: 0.107 2025-09-16 05:30:03,708: Train batch 66400: loss: 0.00 grad norm: 0.43 time: 0.139 2025-09-16 05:30:36,193: Train batch 66600: loss: 0.02 grad norm: 2.47 time: 0.159 2025-09-16 05:31:08,481: Train batch 66800: loss: 0.01 grad norm: 0.23 time: 0.165 2025-09-16 05:31:40,633: Train batch 67000: loss: 0.01 grad norm: 0.24 time: 0.116 2025-09-16 05:32:13,432: Train batch 67200: loss: 0.01 grad norm: 0.58 time: 0.108 2025-09-16 05:32:46,911: Train batch 67400: loss: 0.15 grad norm: 6.71 time: 0.133 2025-09-16 05:33:19,555: Train batch 67600: loss: 0.01 grad norm: 0.65 time: 0.185 2025-09-16 05:33:52,032: Train batch 67800: loss: 0.01 grad norm: 0.52 time: 0.138 2025-09-16 05:34:25,279: Train batch 68000: loss: 0.01 grad norm: 1.80 time: 0.112 2025-09-16 05:34:25,279: Running test after training batch: 68000 2025-09-16 05:34:35,788: Val batch 68000: PER (avg): 0.1111 CTC Loss (avg): 27.6746 time: 10.509 2025-09-16 05:34:35,788: t15.2023.08.13 val PER: 0.0894 2025-09-16 05:34:35,788: t15.2023.08.18 val PER: 0.0771 2025-09-16 05:34:35,788: t15.2023.08.20 val PER: 0.0620 2025-09-16 05:34:35,788: t15.2023.08.25 val PER: 0.0934 2025-09-16 05:34:35,788: t15.2023.08.27 val PER: 0.1785 2025-09-16 05:34:35,789: t15.2023.09.01 val PER: 0.0519 2025-09-16 05:34:35,789: t15.2023.09.03 val PER: 0.1093 2025-09-16 05:34:35,789: t15.2023.09.24 val PER: 0.0898 2025-09-16 05:34:35,789: t15.2023.09.29 val PER: 0.1015 2025-09-16 05:34:35,789: t15.2023.10.01 val PER: 0.1499 2025-09-16 05:34:35,789: t15.2023.10.06 val PER: 0.0678 2025-09-16 05:34:35,789: t15.2023.10.08 val PER: 0.1935 2025-09-16 05:34:35,789: t15.2023.10.13 val PER: 0.1777 2025-09-16 05:34:35,789: t15.2023.10.15 val PER: 0.1048 2025-09-16 05:34:35,789: t15.2023.10.20 val PER: 0.1711 2025-09-16 05:34:35,789: t15.2023.10.22 val PER: 0.1091 2025-09-16 05:34:35,789: t15.2023.11.03 val PER: 0.1635 2025-09-16 05:34:35,789: t15.2023.11.04 val PER: 0.0068 2025-09-16 05:34:35,789: t15.2023.11.17 val PER: 0.0202 2025-09-16 05:34:35,789: t15.2023.11.19 val PER: 0.0100 2025-09-16 05:34:35,789: t15.2023.11.26 val PER: 0.0558 2025-09-16 05:34:35,789: t15.2023.12.03 val PER: 0.0557 2025-09-16 05:34:35,789: t15.2023.12.08 val PER: 0.0426 2025-09-16 05:34:35,789: t15.2023.12.10 val PER: 0.0394 2025-09-16 05:34:35,790: t15.2023.12.17 val PER: 0.0832 2025-09-16 05:34:35,790: t15.2023.12.29 val PER: 0.0782 2025-09-16 05:34:35,790: t15.2024.02.25 val PER: 0.0885 2025-09-16 05:34:35,790: t15.2024.03.08 val PER: 0.1750 2025-09-16 05:34:35,790: t15.2024.03.15 val PER: 0.1670 2025-09-16 05:34:35,790: t15.2024.03.17 val PER: 0.0739 2025-09-16 05:34:35,790: t15.2024.05.10 val PER: 0.1278 2025-09-16 05:34:35,790: t15.2024.06.14 val PER: 0.1309 2025-09-16 05:34:35,790: t15.2024.07.19 val PER: 0.1707 2025-09-16 05:34:35,790: t15.2024.07.21 val PER: 0.0579 2025-09-16 05:34:35,790: t15.2024.07.28 val PER: 0.0838 2025-09-16 05:34:35,790: t15.2025.01.10 val PER: 0.2658 2025-09-16 05:34:35,790: t15.2025.01.12 val PER: 0.0808 2025-09-16 05:34:35,790: t15.2025.03.14 val PER: 0.2781 2025-09-16 05:34:35,790: t15.2025.03.16 val PER: 0.1374 2025-09-16 05:34:35,790: t15.2025.03.30 val PER: 0.2368 2025-09-16 05:34:35,790: t15.2025.04.13 val PER: 0.2111 2025-09-16 05:35:03,330: Train batch 68200: loss: 0.01 grad norm: 0.42 time: 0.126 2025-09-16 05:35:35,151: Train batch 68400: loss: 0.01 grad norm: 0.20 time: 0.117 2025-09-16 05:36:07,443: Train batch 68600: loss: 0.05 grad norm: 9.20 time: 0.104 2025-09-16 05:36:39,808: Train batch 68800: loss: 0.01 grad norm: 0.34 time: 0.156 2025-09-16 05:37:11,669: Train batch 69000: loss: 0.00 grad norm: 0.17 time: 0.157 2025-09-16 05:37:44,139: Train batch 69200: loss: 0.02 grad norm: 2.38 time: 0.113 2025-09-16 05:38:16,508: Train batch 69400: loss: 0.03 grad norm: 2.81 time: 0.121 2025-09-16 05:38:50,030: Train batch 69600: loss: 0.01 grad norm: 0.81 time: 0.128 2025-09-16 05:39:21,856: Train batch 69800: loss: 0.03 grad norm: 6.07 time: 0.124 2025-09-16 05:39:54,566: Train batch 70000: loss: 0.01 grad norm: 0.46 time: 0.097 2025-09-16 05:39:54,566: Running test after training batch: 70000 2025-09-16 05:40:05,080: Val batch 70000: PER (avg): 0.1097 CTC Loss (avg): 27.4982 time: 10.514 2025-09-16 05:40:05,081: t15.2023.08.13 val PER: 0.0863 2025-09-16 05:40:05,081: t15.2023.08.18 val PER: 0.0838 2025-09-16 05:40:05,081: t15.2023.08.20 val PER: 0.0588 2025-09-16 05:40:05,081: t15.2023.08.25 val PER: 0.0904 2025-09-16 05:40:05,081: t15.2023.08.27 val PER: 0.1624 2025-09-16 05:40:05,081: t15.2023.09.01 val PER: 0.0552 2025-09-16 05:40:05,081: t15.2023.09.03 val PER: 0.1140 2025-09-16 05:40:05,081: t15.2023.09.24 val PER: 0.0922 2025-09-16 05:40:05,081: t15.2023.09.29 val PER: 0.1027 2025-09-16 05:40:05,081: t15.2023.10.01 val PER: 0.1506 2025-09-16 05:40:05,081: t15.2023.10.06 val PER: 0.0646 2025-09-16 05:40:05,081: t15.2023.10.08 val PER: 0.1867 2025-09-16 05:40:05,081: t15.2023.10.13 val PER: 0.1590 2025-09-16 05:40:05,081: t15.2023.10.15 val PER: 0.1081 2025-09-16 05:40:05,081: t15.2023.10.20 val PER: 0.1879 2025-09-16 05:40:05,081: t15.2023.10.22 val PER: 0.1114 2025-09-16 05:40:05,081: t15.2023.11.03 val PER: 0.1608 2025-09-16 05:40:05,082: t15.2023.11.04 val PER: 0.0068 2025-09-16 05:40:05,082: t15.2023.11.17 val PER: 0.0249 2025-09-16 05:40:05,082: t15.2023.11.19 val PER: 0.0120 2025-09-16 05:40:05,082: t15.2023.11.26 val PER: 0.0514 2025-09-16 05:40:05,082: t15.2023.12.03 val PER: 0.0546 2025-09-16 05:40:05,082: t15.2023.12.08 val PER: 0.0446 2025-09-16 05:40:05,082: t15.2023.12.10 val PER: 0.0381 2025-09-16 05:40:05,082: t15.2023.12.17 val PER: 0.0863 2025-09-16 05:40:05,082: t15.2023.12.29 val PER: 0.0803 2025-09-16 05:40:05,082: t15.2024.02.25 val PER: 0.0787 2025-09-16 05:40:05,082: t15.2024.03.08 val PER: 0.1764 2025-09-16 05:40:05,082: t15.2024.03.15 val PER: 0.1651 2025-09-16 05:40:05,082: t15.2024.03.17 val PER: 0.0746 2025-09-16 05:40:05,082: t15.2024.05.10 val PER: 0.1337 2025-09-16 05:40:05,082: t15.2024.06.14 val PER: 0.1215 2025-09-16 05:40:05,082: t15.2024.07.19 val PER: 0.1681 2025-09-16 05:40:05,082: t15.2024.07.21 val PER: 0.0552 2025-09-16 05:40:05,082: t15.2024.07.28 val PER: 0.0853 2025-09-16 05:40:05,082: t15.2025.01.10 val PER: 0.2534 2025-09-16 05:40:05,082: t15.2025.01.12 val PER: 0.0778 2025-09-16 05:40:05,083: t15.2025.03.14 val PER: 0.2781 2025-09-16 05:40:05,083: t15.2025.03.16 val PER: 0.1453 2025-09-16 05:40:05,083: t15.2025.03.30 val PER: 0.2241 2025-09-16 05:40:05,083: t15.2025.04.13 val PER: 0.2054 2025-09-16 05:40:33,211: Train batch 70200: loss: 0.00 grad norm: 0.21 time: 0.144 2025-09-16 05:41:05,720: Train batch 70400: loss: 0.00 grad norm: 0.37 time: 0.100 2025-09-16 05:41:38,855: Train batch 70600: loss: 0.00 grad norm: 0.12 time: 0.129 2025-09-16 05:42:11,559: Train batch 70800: loss: 0.01 grad norm: 0.29 time: 0.170 2025-09-16 05:42:44,066: Train batch 71000: loss: 0.02 grad norm: 0.37 time: 0.113 2025-09-16 05:43:16,730: Train batch 71200: loss: 0.00 grad norm: 0.08 time: 0.119 2025-09-16 05:43:49,279: Train batch 71400: loss: 0.02 grad norm: 2.35 time: 0.179 2025-09-16 05:44:21,540: Train batch 71600: loss: 0.01 grad norm: 0.79 time: 0.111 2025-09-16 05:44:53,547: Train batch 71800: loss: 0.01 grad norm: 0.49 time: 0.125 2025-09-16 05:45:26,191: Train batch 72000: loss: 0.01 grad norm: 0.22 time: 0.173 2025-09-16 05:45:26,191: Running test after training batch: 72000 2025-09-16 05:45:36,744: Val batch 72000: PER (avg): 0.1095 CTC Loss (avg): 27.5585 time: 10.553 2025-09-16 05:45:36,744: t15.2023.08.13 val PER: 0.0852 2025-09-16 05:45:36,744: t15.2023.08.18 val PER: 0.0788 2025-09-16 05:45:36,745: t15.2023.08.20 val PER: 0.0620 2025-09-16 05:45:36,745: t15.2023.08.25 val PER: 0.0964 2025-09-16 05:45:36,745: t15.2023.08.27 val PER: 0.1720 2025-09-16 05:45:36,745: t15.2023.09.01 val PER: 0.0495 2025-09-16 05:45:36,745: t15.2023.09.03 val PER: 0.1116 2025-09-16 05:45:36,745: t15.2023.09.24 val PER: 0.0995 2025-09-16 05:45:36,745: t15.2023.09.29 val PER: 0.1008 2025-09-16 05:45:36,745: t15.2023.10.01 val PER: 0.1420 2025-09-16 05:45:36,745: t15.2023.10.06 val PER: 0.0635 2025-09-16 05:45:36,745: t15.2023.10.08 val PER: 0.1962 2025-09-16 05:45:36,745: t15.2023.10.13 val PER: 0.1668 2025-09-16 05:45:36,745: t15.2023.10.15 val PER: 0.1048 2025-09-16 05:45:36,745: t15.2023.10.20 val PER: 0.1779 2025-09-16 05:45:36,745: t15.2023.10.22 val PER: 0.1080 2025-09-16 05:45:36,745: t15.2023.11.03 val PER: 0.1635 2025-09-16 05:45:36,745: t15.2023.11.04 val PER: 0.0068 2025-09-16 05:45:36,745: t15.2023.11.17 val PER: 0.0218 2025-09-16 05:45:36,745: t15.2023.11.19 val PER: 0.0100 2025-09-16 05:45:36,745: t15.2023.11.26 val PER: 0.0522 2025-09-16 05:45:36,746: t15.2023.12.03 val PER: 0.0578 2025-09-16 05:45:36,746: t15.2023.12.08 val PER: 0.0419 2025-09-16 05:45:36,746: t15.2023.12.10 val PER: 0.0355 2025-09-16 05:45:36,746: t15.2023.12.17 val PER: 0.0759 2025-09-16 05:45:36,746: t15.2023.12.29 val PER: 0.0776 2025-09-16 05:45:36,746: t15.2024.02.25 val PER: 0.0885 2025-09-16 05:45:36,746: t15.2024.03.08 val PER: 0.1707 2025-09-16 05:45:36,746: t15.2024.03.15 val PER: 0.1607 2025-09-16 05:45:36,746: t15.2024.03.17 val PER: 0.0816 2025-09-16 05:45:36,746: t15.2024.05.10 val PER: 0.1308 2025-09-16 05:45:36,746: t15.2024.06.14 val PER: 0.1246 2025-09-16 05:45:36,746: t15.2024.07.19 val PER: 0.1674 2025-09-16 05:45:36,746: t15.2024.07.21 val PER: 0.0524 2025-09-16 05:45:36,746: t15.2024.07.28 val PER: 0.0772 2025-09-16 05:45:36,746: t15.2025.01.10 val PER: 0.2686 2025-09-16 05:45:36,746: t15.2025.01.12 val PER: 0.0808 2025-09-16 05:45:36,746: t15.2025.03.14 val PER: 0.2811 2025-09-16 05:45:36,746: t15.2025.03.16 val PER: 0.1374 2025-09-16 05:45:36,746: t15.2025.03.30 val PER: 0.2333 2025-09-16 05:45:36,746: t15.2025.04.13 val PER: 0.2126 2025-09-16 05:45:36,747: New best test PER 0.1097 --> 0.1095 2025-09-16 05:45:36,747: Checkpointing model 2025-09-16 05:45:38,119: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 05:46:06,492: Train batch 72200: loss: 0.00 grad norm: 0.23 time: 0.143 2025-09-16 05:46:39,113: Train batch 72400: loss: 0.01 grad norm: 1.38 time: 0.167 2025-09-16 05:47:11,783: Train batch 72600: loss: 0.10 grad norm: 1.71 time: 0.157 2025-09-16 05:47:44,020: Train batch 72800: loss: 0.01 grad norm: 0.23 time: 0.133 2025-09-16 05:48:16,097: Train batch 73000: loss: 0.01 grad norm: 0.45 time: 0.115 2025-09-16 05:48:47,970: Train batch 73200: loss: 0.00 grad norm: 0.15 time: 0.110 2025-09-16 05:49:20,428: Train batch 73400: loss: 0.03 grad norm: 3.01 time: 0.156 2025-09-16 05:49:52,613: Train batch 73600: loss: 0.02 grad norm: 4.12 time: 0.094 2025-09-16 05:50:25,156: Train batch 73800: loss: 0.00 grad norm: 0.06 time: 0.155 2025-09-16 05:50:57,255: Train batch 74000: loss: 0.04 grad norm: 3.22 time: 0.147 2025-09-16 05:50:57,255: Running test after training batch: 74000 2025-09-16 05:51:07,774: Val batch 74000: PER (avg): 0.1092 CTC Loss (avg): 27.8142 time: 10.519 2025-09-16 05:51:07,775: t15.2023.08.13 val PER: 0.0863 2025-09-16 05:51:07,775: t15.2023.08.18 val PER: 0.0771 2025-09-16 05:51:07,775: t15.2023.08.20 val PER: 0.0604 2025-09-16 05:51:07,775: t15.2023.08.25 val PER: 0.0919 2025-09-16 05:51:07,775: t15.2023.08.27 val PER: 0.1672 2025-09-16 05:51:07,775: t15.2023.09.01 val PER: 0.0463 2025-09-16 05:51:07,775: t15.2023.09.03 val PER: 0.1105 2025-09-16 05:51:07,775: t15.2023.09.24 val PER: 0.0947 2025-09-16 05:51:07,775: t15.2023.09.29 val PER: 0.1040 2025-09-16 05:51:07,775: t15.2023.10.01 val PER: 0.1480 2025-09-16 05:51:07,775: t15.2023.10.06 val PER: 0.0592 2025-09-16 05:51:07,775: t15.2023.10.08 val PER: 0.1935 2025-09-16 05:51:07,775: t15.2023.10.13 val PER: 0.1683 2025-09-16 05:51:07,775: t15.2023.10.15 val PER: 0.1035 2025-09-16 05:51:07,775: t15.2023.10.20 val PER: 0.1711 2025-09-16 05:51:07,775: t15.2023.10.22 val PER: 0.0991 2025-09-16 05:51:07,775: t15.2023.11.03 val PER: 0.1649 2025-09-16 05:51:07,776: t15.2023.11.04 val PER: 0.0068 2025-09-16 05:51:07,776: t15.2023.11.17 val PER: 0.0233 2025-09-16 05:51:07,776: t15.2023.11.19 val PER: 0.0080 2025-09-16 05:51:07,776: t15.2023.11.26 val PER: 0.0507 2025-09-16 05:51:07,776: t15.2023.12.03 val PER: 0.0567 2025-09-16 05:51:07,776: t15.2023.12.08 val PER: 0.0393 2025-09-16 05:51:07,776: t15.2023.12.10 val PER: 0.0394 2025-09-16 05:51:07,776: t15.2023.12.17 val PER: 0.0873 2025-09-16 05:51:07,776: t15.2023.12.29 val PER: 0.0810 2025-09-16 05:51:07,776: t15.2024.02.25 val PER: 0.0801 2025-09-16 05:51:07,776: t15.2024.03.08 val PER: 0.1707 2025-09-16 05:51:07,776: t15.2024.03.15 val PER: 0.1639 2025-09-16 05:51:07,776: t15.2024.03.17 val PER: 0.0746 2025-09-16 05:51:07,776: t15.2024.05.10 val PER: 0.1367 2025-09-16 05:51:07,776: t15.2024.06.14 val PER: 0.1167 2025-09-16 05:51:07,776: t15.2024.07.19 val PER: 0.1668 2025-09-16 05:51:07,776: t15.2024.07.21 val PER: 0.0579 2025-09-16 05:51:07,776: t15.2024.07.28 val PER: 0.0779 2025-09-16 05:51:07,776: t15.2025.01.10 val PER: 0.2617 2025-09-16 05:51:07,777: t15.2025.01.12 val PER: 0.0801 2025-09-16 05:51:07,777: t15.2025.03.14 val PER: 0.2825 2025-09-16 05:51:07,777: t15.2025.03.16 val PER: 0.1414 2025-09-16 05:51:07,777: t15.2025.03.30 val PER: 0.2310 2025-09-16 05:51:07,777: t15.2025.04.13 val PER: 0.2111 2025-09-16 05:51:07,777: New best test PER 0.1095 --> 0.1092 2025-09-16 05:51:07,777: Checkpointing model 2025-09-16 05:51:09,086: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 05:51:36,937: Train batch 74200: loss: 0.01 grad norm: 0.83 time: 0.128 2025-09-16 05:52:09,753: Train batch 74400: loss: 0.01 grad norm: 2.45 time: 0.154 2025-09-16 05:52:42,576: Train batch 74600: loss: 0.06 grad norm: 8.72 time: 0.119 2025-09-16 05:53:15,418: Train batch 74800: loss: 0.00 grad norm: 0.09 time: 0.116 2025-09-16 05:53:48,311: Train batch 75000: loss: 0.01 grad norm: 0.20 time: 0.140 2025-09-16 05:54:20,393: Train batch 75200: loss: 0.01 grad norm: 0.35 time: 0.167 2025-09-16 05:54:52,783: Train batch 75400: loss: 0.00 grad norm: 0.24 time: 0.117 2025-09-16 05:55:25,072: Train batch 75600: loss: 0.00 grad norm: 0.12 time: 0.123 2025-09-16 05:55:57,046: Train batch 75800: loss: 0.00 grad norm: 0.43 time: 0.128 2025-09-16 05:56:28,744: Train batch 76000: loss: 0.01 grad norm: 1.32 time: 0.113 2025-09-16 05:56:28,744: Running test after training batch: 76000 2025-09-16 05:56:39,466: Val batch 76000: PER (avg): 0.1082 CTC Loss (avg): 27.5969 time: 10.722 2025-09-16 05:56:39,467: t15.2023.08.13 val PER: 0.0884 2025-09-16 05:56:39,467: t15.2023.08.18 val PER: 0.0780 2025-09-16 05:56:39,467: t15.2023.08.20 val PER: 0.0580 2025-09-16 05:56:39,467: t15.2023.08.25 val PER: 0.1009 2025-09-16 05:56:39,467: t15.2023.08.27 val PER: 0.1656 2025-09-16 05:56:39,467: t15.2023.09.01 val PER: 0.0495 2025-09-16 05:56:39,467: t15.2023.09.03 val PER: 0.1128 2025-09-16 05:56:39,467: t15.2023.09.24 val PER: 0.0959 2025-09-16 05:56:39,467: t15.2023.09.29 val PER: 0.0983 2025-09-16 05:56:39,467: t15.2023.10.01 val PER: 0.1413 2025-09-16 05:56:39,467: t15.2023.10.06 val PER: 0.0635 2025-09-16 05:56:39,467: t15.2023.10.08 val PER: 0.1989 2025-09-16 05:56:39,467: t15.2023.10.13 val PER: 0.1637 2025-09-16 05:56:39,467: t15.2023.10.15 val PER: 0.1015 2025-09-16 05:56:39,467: t15.2023.10.20 val PER: 0.1678 2025-09-16 05:56:39,467: t15.2023.10.22 val PER: 0.1047 2025-09-16 05:56:39,468: t15.2023.11.03 val PER: 0.1588 2025-09-16 05:56:39,468: t15.2023.11.04 val PER: 0.0068 2025-09-16 05:56:39,468: t15.2023.11.17 val PER: 0.0218 2025-09-16 05:56:39,468: t15.2023.11.19 val PER: 0.0100 2025-09-16 05:56:39,468: t15.2023.11.26 val PER: 0.0529 2025-09-16 05:56:39,468: t15.2023.12.03 val PER: 0.0578 2025-09-16 05:56:39,468: t15.2023.12.08 val PER: 0.0419 2025-09-16 05:56:39,468: t15.2023.12.10 val PER: 0.0394 2025-09-16 05:56:39,468: t15.2023.12.17 val PER: 0.0873 2025-09-16 05:56:39,468: t15.2023.12.29 val PER: 0.0769 2025-09-16 05:56:39,468: t15.2024.02.25 val PER: 0.0801 2025-09-16 05:56:39,468: t15.2024.03.08 val PER: 0.1721 2025-09-16 05:56:39,468: t15.2024.03.15 val PER: 0.1588 2025-09-16 05:56:39,468: t15.2024.03.17 val PER: 0.0767 2025-09-16 05:56:39,468: t15.2024.05.10 val PER: 0.1248 2025-09-16 05:56:39,468: t15.2024.06.14 val PER: 0.1199 2025-09-16 05:56:39,468: t15.2024.07.19 val PER: 0.1688 2025-09-16 05:56:39,468: t15.2024.07.21 val PER: 0.0552 2025-09-16 05:56:39,468: t15.2024.07.28 val PER: 0.0794 2025-09-16 05:56:39,469: t15.2025.01.10 val PER: 0.2672 2025-09-16 05:56:39,469: t15.2025.01.12 val PER: 0.0770 2025-09-16 05:56:39,469: t15.2025.03.14 val PER: 0.2737 2025-09-16 05:56:39,469: t15.2025.03.16 val PER: 0.1466 2025-09-16 05:56:39,469: t15.2025.03.30 val PER: 0.2184 2025-09-16 05:56:39,469: t15.2025.04.13 val PER: 0.1997 2025-09-16 05:56:39,469: New best test PER 0.1092 --> 0.1082 2025-09-16 05:56:39,469: Checkpointing model 2025-09-16 05:56:40,831: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 05:57:08,973: Train batch 76200: loss: 0.01 grad norm: 0.53 time: 0.145 2025-09-16 05:57:42,328: Train batch 76400: loss: 0.01 grad norm: 1.08 time: 0.133 2025-09-16 05:58:16,241: Train batch 76600: loss: 0.01 grad norm: 0.53 time: 0.128 2025-09-16 05:58:48,849: Train batch 76800: loss: 0.00 grad norm: 0.15 time: 0.157 2025-09-16 05:59:21,259: Train batch 77000: loss: 0.01 grad norm: 0.76 time: 0.162 2025-09-16 05:59:54,007: Train batch 77200: loss: 0.00 grad norm: 0.04 time: 0.157 2025-09-16 06:00:27,244: Train batch 77400: loss: 0.02 grad norm: 2.84 time: 0.138 2025-09-16 06:01:00,583: Train batch 77600: loss: 0.00 grad norm: 0.19 time: 0.123 2025-09-16 06:01:33,264: Train batch 77800: loss: 0.00 grad norm: 0.24 time: 0.117 2025-09-16 06:02:06,323: Train batch 78000: loss: 0.01 grad norm: 0.69 time: 0.121 2025-09-16 06:02:06,324: Running test after training batch: 78000 2025-09-16 06:02:17,026: Val batch 78000: PER (avg): 0.1089 CTC Loss (avg): 27.3303 time: 10.702 2025-09-16 06:02:17,026: t15.2023.08.13 val PER: 0.0946 2025-09-16 06:02:17,027: t15.2023.08.18 val PER: 0.0821 2025-09-16 06:02:17,027: t15.2023.08.20 val PER: 0.0580 2025-09-16 06:02:17,027: t15.2023.08.25 val PER: 0.0934 2025-09-16 06:02:17,027: t15.2023.08.27 val PER: 0.1624 2025-09-16 06:02:17,027: t15.2023.09.01 val PER: 0.0471 2025-09-16 06:02:17,027: t15.2023.09.03 val PER: 0.1128 2025-09-16 06:02:17,027: t15.2023.09.24 val PER: 0.0934 2025-09-16 06:02:17,027: t15.2023.09.29 val PER: 0.1021 2025-09-16 06:02:17,027: t15.2023.10.01 val PER: 0.1499 2025-09-16 06:02:17,027: t15.2023.10.06 val PER: 0.0527 2025-09-16 06:02:17,027: t15.2023.10.08 val PER: 0.1935 2025-09-16 06:02:17,027: t15.2023.10.13 val PER: 0.1668 2025-09-16 06:02:17,027: t15.2023.10.15 val PER: 0.1101 2025-09-16 06:02:17,027: t15.2023.10.20 val PER: 0.1812 2025-09-16 06:02:17,027: t15.2023.10.22 val PER: 0.1036 2025-09-16 06:02:17,027: t15.2023.11.03 val PER: 0.1642 2025-09-16 06:02:17,027: t15.2023.11.04 val PER: 0.0068 2025-09-16 06:02:17,027: t15.2023.11.17 val PER: 0.0233 2025-09-16 06:02:17,027: t15.2023.11.19 val PER: 0.0080 2025-09-16 06:02:17,028: t15.2023.11.26 val PER: 0.0500 2025-09-16 06:02:17,028: t15.2023.12.03 val PER: 0.0599 2025-09-16 06:02:17,028: t15.2023.12.08 val PER: 0.0413 2025-09-16 06:02:17,028: t15.2023.12.10 val PER: 0.0368 2025-09-16 06:02:17,028: t15.2023.12.17 val PER: 0.0842 2025-09-16 06:02:17,028: t15.2023.12.29 val PER: 0.0741 2025-09-16 06:02:17,028: t15.2024.02.25 val PER: 0.0801 2025-09-16 06:02:17,028: t15.2024.03.08 val PER: 0.1735 2025-09-16 06:02:17,028: t15.2024.03.15 val PER: 0.1626 2025-09-16 06:02:17,028: t15.2024.03.17 val PER: 0.0746 2025-09-16 06:02:17,028: t15.2024.05.10 val PER: 0.1189 2025-09-16 06:02:17,028: t15.2024.06.14 val PER: 0.1278 2025-09-16 06:02:17,028: t15.2024.07.19 val PER: 0.1622 2025-09-16 06:02:17,028: t15.2024.07.21 val PER: 0.0531 2025-09-16 06:02:17,028: t15.2024.07.28 val PER: 0.0801 2025-09-16 06:02:17,028: t15.2025.01.10 val PER: 0.2769 2025-09-16 06:02:17,028: t15.2025.01.12 val PER: 0.0747 2025-09-16 06:02:17,028: t15.2025.03.14 val PER: 0.2870 2025-09-16 06:02:17,028: t15.2025.03.16 val PER: 0.1401 2025-09-16 06:02:17,028: t15.2025.03.30 val PER: 0.2276 2025-09-16 06:02:17,029: t15.2025.04.13 val PER: 0.2011 2025-09-16 06:02:44,720: Train batch 78200: loss: 0.01 grad norm: 0.57 time: 0.104 2025-09-16 06:03:16,912: Train batch 78400: loss: 0.01 grad norm: 0.58 time: 0.135 2025-09-16 06:03:50,006: Train batch 78600: loss: 0.03 grad norm: 2.93 time: 0.118 2025-09-16 06:04:23,282: Train batch 78800: loss: 0.12 grad norm: 2.28 time: 0.141 2025-09-16 06:04:56,889: Train batch 79000: loss: 0.00 grad norm: 0.25 time: 0.108 2025-09-16 06:05:29,802: Train batch 79200: loss: 0.00 grad norm: 0.24 time: 0.162 2025-09-16 06:06:02,422: Train batch 79400: loss: 0.01 grad norm: 0.30 time: 0.163 2025-09-16 06:06:35,790: Train batch 79600: loss: 0.01 grad norm: 1.13 time: 0.141 2025-09-16 06:07:09,025: Train batch 79800: loss: 0.00 grad norm: 0.74 time: 0.153 2025-09-16 06:07:42,026: Train batch 80000: loss: 0.02 grad norm: 3.20 time: 0.150 2025-09-16 06:07:42,026: Running test after training batch: 80000 2025-09-16 06:07:52,526: Val batch 80000: PER (avg): 0.1090 CTC Loss (avg): 27.3370 time: 10.500 2025-09-16 06:07:52,527: t15.2023.08.13 val PER: 0.0925 2025-09-16 06:07:52,527: t15.2023.08.18 val PER: 0.0805 2025-09-16 06:07:52,527: t15.2023.08.20 val PER: 0.0620 2025-09-16 06:07:52,527: t15.2023.08.25 val PER: 0.0904 2025-09-16 06:07:52,527: t15.2023.08.27 val PER: 0.1624 2025-09-16 06:07:52,527: t15.2023.09.01 val PER: 0.0552 2025-09-16 06:07:52,527: t15.2023.09.03 val PER: 0.1081 2025-09-16 06:07:52,527: t15.2023.09.24 val PER: 0.0934 2025-09-16 06:07:52,527: t15.2023.09.29 val PER: 0.1008 2025-09-16 06:07:52,527: t15.2023.10.01 val PER: 0.1526 2025-09-16 06:07:52,527: t15.2023.10.06 val PER: 0.0549 2025-09-16 06:07:52,527: t15.2023.10.08 val PER: 0.1908 2025-09-16 06:07:52,527: t15.2023.10.13 val PER: 0.1660 2025-09-16 06:07:52,527: t15.2023.10.15 val PER: 0.1035 2025-09-16 06:07:52,528: t15.2023.10.20 val PER: 0.1644 2025-09-16 06:07:52,528: t15.2023.10.22 val PER: 0.1080 2025-09-16 06:07:52,528: t15.2023.11.03 val PER: 0.1567 2025-09-16 06:07:52,528: t15.2023.11.04 val PER: 0.0068 2025-09-16 06:07:52,528: t15.2023.11.17 val PER: 0.0233 2025-09-16 06:07:52,528: t15.2023.11.19 val PER: 0.0080 2025-09-16 06:07:52,528: t15.2023.11.26 val PER: 0.0529 2025-09-16 06:07:52,528: t15.2023.12.03 val PER: 0.0578 2025-09-16 06:07:52,528: t15.2023.12.08 val PER: 0.0386 2025-09-16 06:07:52,528: t15.2023.12.10 val PER: 0.0329 2025-09-16 06:07:52,528: t15.2023.12.17 val PER: 0.0811 2025-09-16 06:07:52,528: t15.2023.12.29 val PER: 0.0776 2025-09-16 06:07:52,528: t15.2024.02.25 val PER: 0.0688 2025-09-16 06:07:52,528: t15.2024.03.08 val PER: 0.1721 2025-09-16 06:07:52,528: t15.2024.03.15 val PER: 0.1651 2025-09-16 06:07:52,528: t15.2024.03.17 val PER: 0.0711 2025-09-16 06:07:52,528: t15.2024.05.10 val PER: 0.1248 2025-09-16 06:07:52,528: t15.2024.06.14 val PER: 0.1230 2025-09-16 06:07:52,528: t15.2024.07.19 val PER: 0.1707 2025-09-16 06:07:52,528: t15.2024.07.21 val PER: 0.0531 2025-09-16 06:07:52,529: t15.2024.07.28 val PER: 0.0853 2025-09-16 06:07:52,529: t15.2025.01.10 val PER: 0.2824 2025-09-16 06:07:52,529: t15.2025.01.12 val PER: 0.0808 2025-09-16 06:07:52,529: t15.2025.03.14 val PER: 0.2766 2025-09-16 06:07:52,529: t15.2025.03.16 val PER: 0.1401 2025-09-16 06:07:52,529: t15.2025.03.30 val PER: 0.2333 2025-09-16 06:07:52,529: t15.2025.04.13 val PER: 0.2026 2025-09-16 06:08:20,772: Train batch 80200: loss: 0.01 grad norm: 1.02 time: 0.118 2025-09-16 06:08:54,009: Train batch 80400: loss: 0.01 grad norm: 0.48 time: 0.118 2025-09-16 06:09:27,329: Train batch 80600: loss: 0.00 grad norm: 0.09 time: 0.173 2025-09-16 06:10:00,140: Train batch 80800: loss: 0.00 grad norm: 0.07 time: 0.129 2025-09-16 06:10:33,443: Train batch 81000: loss: 0.00 grad norm: 0.15 time: 0.116 2025-09-16 06:11:06,620: Train batch 81200: loss: 0.01 grad norm: 1.26 time: 0.164 2025-09-16 06:11:40,610: Train batch 81400: loss: 0.00 grad norm: 0.40 time: 0.157 2025-09-16 06:12:14,749: Train batch 81600: loss: 0.01 grad norm: 1.02 time: 0.119 2025-09-16 06:12:47,892: Train batch 81800: loss: 0.00 grad norm: 0.06 time: 0.129 2025-09-16 06:13:21,449: Train batch 82000: loss: 0.01 grad norm: 0.39 time: 0.159 2025-09-16 06:13:21,449: Running test after training batch: 82000 2025-09-16 06:13:31,711: Val batch 82000: PER (avg): 0.1079 CTC Loss (avg): 27.5033 time: 10.261 2025-09-16 06:13:31,711: t15.2023.08.13 val PER: 0.0925 2025-09-16 06:13:31,711: t15.2023.08.18 val PER: 0.0780 2025-09-16 06:13:31,711: t15.2023.08.20 val PER: 0.0612 2025-09-16 06:13:31,711: t15.2023.08.25 val PER: 0.0919 2025-09-16 06:13:31,712: t15.2023.08.27 val PER: 0.1624 2025-09-16 06:13:31,712: t15.2023.09.01 val PER: 0.0511 2025-09-16 06:13:31,712: t15.2023.09.03 val PER: 0.1116 2025-09-16 06:13:31,712: t15.2023.09.24 val PER: 0.0922 2025-09-16 06:13:31,712: t15.2023.09.29 val PER: 0.1021 2025-09-16 06:13:31,712: t15.2023.10.01 val PER: 0.1473 2025-09-16 06:13:31,712: t15.2023.10.06 val PER: 0.0527 2025-09-16 06:13:31,712: t15.2023.10.08 val PER: 0.1867 2025-09-16 06:13:31,712: t15.2023.10.13 val PER: 0.1699 2025-09-16 06:13:31,712: t15.2023.10.15 val PER: 0.1068 2025-09-16 06:13:31,712: t15.2023.10.20 val PER: 0.1711 2025-09-16 06:13:31,712: t15.2023.10.22 val PER: 0.1002 2025-09-16 06:13:31,712: t15.2023.11.03 val PER: 0.1642 2025-09-16 06:13:31,712: t15.2023.11.04 val PER: 0.0068 2025-09-16 06:13:31,712: t15.2023.11.17 val PER: 0.0233 2025-09-16 06:13:31,712: t15.2023.11.19 val PER: 0.0080 2025-09-16 06:13:31,712: t15.2023.11.26 val PER: 0.0493 2025-09-16 06:13:31,712: t15.2023.12.03 val PER: 0.0588 2025-09-16 06:13:31,712: t15.2023.12.08 val PER: 0.0399 2025-09-16 06:13:31,712: t15.2023.12.10 val PER: 0.0355 2025-09-16 06:13:31,713: t15.2023.12.17 val PER: 0.0728 2025-09-16 06:13:31,713: t15.2023.12.29 val PER: 0.0762 2025-09-16 06:13:31,713: t15.2024.02.25 val PER: 0.0730 2025-09-16 06:13:31,713: t15.2024.03.08 val PER: 0.1622 2025-09-16 06:13:31,713: t15.2024.03.15 val PER: 0.1714 2025-09-16 06:13:31,713: t15.2024.03.17 val PER: 0.0725 2025-09-16 06:13:31,713: t15.2024.05.10 val PER: 0.1144 2025-09-16 06:13:31,713: t15.2024.06.14 val PER: 0.1183 2025-09-16 06:13:31,713: t15.2024.07.19 val PER: 0.1648 2025-09-16 06:13:31,713: t15.2024.07.21 val PER: 0.0559 2025-09-16 06:13:31,713: t15.2024.07.28 val PER: 0.0809 2025-09-16 06:13:31,713: t15.2025.01.10 val PER: 0.2617 2025-09-16 06:13:31,713: t15.2025.01.12 val PER: 0.0816 2025-09-16 06:13:31,713: t15.2025.03.14 val PER: 0.2870 2025-09-16 06:13:31,713: t15.2025.03.16 val PER: 0.1335 2025-09-16 06:13:31,713: t15.2025.03.30 val PER: 0.2230 2025-09-16 06:13:31,713: t15.2025.04.13 val PER: 0.2026 2025-09-16 06:13:31,713: New best test PER 0.1082 --> 0.1079 2025-09-16 06:13:31,713: Checkpointing model 2025-09-16 06:13:33,086: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 06:14:01,636: Train batch 82200: loss: 0.00 grad norm: 0.20 time: 0.128 2025-09-16 06:14:34,389: Train batch 82400: loss: 0.00 grad norm: 0.08 time: 0.174 2025-09-16 06:15:07,238: Train batch 82600: loss: 0.01 grad norm: 0.71 time: 0.131 2025-09-16 06:15:40,149: Train batch 82800: loss: 0.01 grad norm: 0.84 time: 0.178 2025-09-16 06:16:12,123: Train batch 83000: loss: 0.01 grad norm: 1.45 time: 0.115 2025-09-16 06:16:44,576: Train batch 83200: loss: 0.02 grad norm: 1.73 time: 0.146 2025-09-16 06:17:17,441: Train batch 83400: loss: 0.01 grad norm: 0.17 time: 0.167 2025-09-16 06:17:49,903: Train batch 83600: loss: 0.01 grad norm: 0.82 time: 0.157 2025-09-16 06:18:22,718: Train batch 83800: loss: 0.13 grad norm: 12.02 time: 0.155 2025-09-16 06:18:56,284: Train batch 84000: loss: 0.01 grad norm: 0.25 time: 0.175 2025-09-16 06:18:56,284: Running test after training batch: 84000 2025-09-16 06:19:07,114: Val batch 84000: PER (avg): 0.1084 CTC Loss (avg): 27.3157 time: 10.830 2025-09-16 06:19:07,114: t15.2023.08.13 val PER: 0.0936 2025-09-16 06:19:07,114: t15.2023.08.18 val PER: 0.0746 2025-09-16 06:19:07,114: t15.2023.08.20 val PER: 0.0580 2025-09-16 06:19:07,114: t15.2023.08.25 val PER: 0.0919 2025-09-16 06:19:07,115: t15.2023.08.27 val PER: 0.1656 2025-09-16 06:19:07,115: t15.2023.09.01 val PER: 0.0495 2025-09-16 06:19:07,115: t15.2023.09.03 val PER: 0.1164 2025-09-16 06:19:07,115: t15.2023.09.24 val PER: 0.1019 2025-09-16 06:19:07,115: t15.2023.09.29 val PER: 0.0957 2025-09-16 06:19:07,115: t15.2023.10.01 val PER: 0.1519 2025-09-16 06:19:07,115: t15.2023.10.06 val PER: 0.0538 2025-09-16 06:19:07,115: t15.2023.10.08 val PER: 0.1867 2025-09-16 06:19:07,115: t15.2023.10.13 val PER: 0.1699 2025-09-16 06:19:07,115: t15.2023.10.15 val PER: 0.1088 2025-09-16 06:19:07,115: t15.2023.10.20 val PER: 0.1711 2025-09-16 06:19:07,115: t15.2023.10.22 val PER: 0.1002 2025-09-16 06:19:07,115: t15.2023.11.03 val PER: 0.1628 2025-09-16 06:19:07,115: t15.2023.11.04 val PER: 0.0068 2025-09-16 06:19:07,115: t15.2023.11.17 val PER: 0.0233 2025-09-16 06:19:07,115: t15.2023.11.19 val PER: 0.0080 2025-09-16 06:19:07,115: t15.2023.11.26 val PER: 0.0536 2025-09-16 06:19:07,115: t15.2023.12.03 val PER: 0.0546 2025-09-16 06:19:07,115: t15.2023.12.08 val PER: 0.0393 2025-09-16 06:19:07,115: t15.2023.12.10 val PER: 0.0368 2025-09-16 06:19:07,116: t15.2023.12.17 val PER: 0.0811 2025-09-16 06:19:07,116: t15.2023.12.29 val PER: 0.0796 2025-09-16 06:19:07,116: t15.2024.02.25 val PER: 0.0787 2025-09-16 06:19:07,116: t15.2024.03.08 val PER: 0.1650 2025-09-16 06:19:07,116: t15.2024.03.15 val PER: 0.1670 2025-09-16 06:19:07,116: t15.2024.03.17 val PER: 0.0697 2025-09-16 06:19:07,116: t15.2024.05.10 val PER: 0.1174 2025-09-16 06:19:07,116: t15.2024.06.14 val PER: 0.1183 2025-09-16 06:19:07,116: t15.2024.07.19 val PER: 0.1628 2025-09-16 06:19:07,116: t15.2024.07.21 val PER: 0.0545 2025-09-16 06:19:07,116: t15.2024.07.28 val PER: 0.0824 2025-09-16 06:19:07,116: t15.2025.01.10 val PER: 0.2507 2025-09-16 06:19:07,116: t15.2025.01.12 val PER: 0.0878 2025-09-16 06:19:07,116: t15.2025.03.14 val PER: 0.2825 2025-09-16 06:19:07,116: t15.2025.03.16 val PER: 0.1414 2025-09-16 06:19:07,116: t15.2025.03.30 val PER: 0.2287 2025-09-16 06:19:07,116: t15.2025.04.13 val PER: 0.2011 2025-09-16 06:19:34,602: Train batch 84200: loss: 0.01 grad norm: 0.88 time: 0.140 2025-09-16 06:20:07,449: Train batch 84400: loss: 0.03 grad norm: 3.56 time: 0.107 2025-09-16 06:20:39,939: Train batch 84600: loss: 0.00 grad norm: 0.22 time: 0.175 2025-09-16 06:21:12,697: Train batch 84800: loss: 0.01 grad norm: 0.48 time: 0.139 2025-09-16 06:21:44,634: Train batch 85000: loss: 0.00 grad norm: 0.09 time: 0.161 2025-09-16 06:22:17,477: Train batch 85200: loss: 0.00 grad norm: 0.26 time: 0.097 2025-09-16 06:22:50,228: Train batch 85400: loss: 0.00 grad norm: 0.16 time: 0.134 2025-09-16 06:23:23,622: Train batch 85600: loss: 0.00 grad norm: 0.26 time: 0.145 2025-09-16 06:23:56,365: Train batch 85800: loss: 0.00 grad norm: 0.50 time: 0.124 2025-09-16 06:24:29,660: Train batch 86000: loss: 0.01 grad norm: 1.00 time: 0.117 2025-09-16 06:24:29,660: Running test after training batch: 86000 2025-09-16 06:24:40,538: Val batch 86000: PER (avg): 0.1085 CTC Loss (avg): 27.3709 time: 10.878 2025-09-16 06:24:40,539: t15.2023.08.13 val PER: 0.0863 2025-09-16 06:24:40,539: t15.2023.08.18 val PER: 0.0754 2025-09-16 06:24:40,539: t15.2023.08.20 val PER: 0.0620 2025-09-16 06:24:40,539: t15.2023.08.25 val PER: 0.0919 2025-09-16 06:24:40,539: t15.2023.08.27 val PER: 0.1656 2025-09-16 06:24:40,539: t15.2023.09.01 val PER: 0.0463 2025-09-16 06:24:40,539: t15.2023.09.03 val PER: 0.1105 2025-09-16 06:24:40,539: t15.2023.09.24 val PER: 0.1032 2025-09-16 06:24:40,539: t15.2023.09.29 val PER: 0.0964 2025-09-16 06:24:40,539: t15.2023.10.01 val PER: 0.1486 2025-09-16 06:24:40,539: t15.2023.10.06 val PER: 0.0517 2025-09-16 06:24:40,539: t15.2023.10.08 val PER: 0.1867 2025-09-16 06:24:40,539: t15.2023.10.13 val PER: 0.1691 2025-09-16 06:24:40,539: t15.2023.10.15 val PER: 0.1101 2025-09-16 06:24:40,539: t15.2023.10.20 val PER: 0.1711 2025-09-16 06:24:40,539: t15.2023.10.22 val PER: 0.1024 2025-09-16 06:24:40,539: t15.2023.11.03 val PER: 0.1662 2025-09-16 06:24:40,539: t15.2023.11.04 val PER: 0.0068 2025-09-16 06:24:40,540: t15.2023.11.17 val PER: 0.0233 2025-09-16 06:24:40,540: t15.2023.11.19 val PER: 0.0080 2025-09-16 06:24:40,540: t15.2023.11.26 val PER: 0.0493 2025-09-16 06:24:40,540: t15.2023.12.03 val PER: 0.0620 2025-09-16 06:24:40,540: t15.2023.12.08 val PER: 0.0413 2025-09-16 06:24:40,540: t15.2023.12.10 val PER: 0.0368 2025-09-16 06:24:40,540: t15.2023.12.17 val PER: 0.0800 2025-09-16 06:24:40,540: t15.2023.12.29 val PER: 0.0796 2025-09-16 06:24:40,540: t15.2024.02.25 val PER: 0.0744 2025-09-16 06:24:40,540: t15.2024.03.08 val PER: 0.1707 2025-09-16 06:24:40,540: t15.2024.03.15 val PER: 0.1664 2025-09-16 06:24:40,540: t15.2024.03.17 val PER: 0.0676 2025-09-16 06:24:40,540: t15.2024.05.10 val PER: 0.1293 2025-09-16 06:24:40,540: t15.2024.06.14 val PER: 0.1309 2025-09-16 06:24:40,540: t15.2024.07.19 val PER: 0.1668 2025-09-16 06:24:40,540: t15.2024.07.21 val PER: 0.0524 2025-09-16 06:24:40,540: t15.2024.07.28 val PER: 0.0860 2025-09-16 06:24:40,540: t15.2025.01.10 val PER: 0.2466 2025-09-16 06:24:40,540: t15.2025.01.12 val PER: 0.0808 2025-09-16 06:24:40,541: t15.2025.03.14 val PER: 0.2781 2025-09-16 06:24:40,541: t15.2025.03.16 val PER: 0.1453 2025-09-16 06:24:40,541: t15.2025.03.30 val PER: 0.2287 2025-09-16 06:24:40,541: t15.2025.04.13 val PER: 0.1997 2025-09-16 06:25:08,119: Train batch 86200: loss: 0.01 grad norm: 0.58 time: 0.139 2025-09-16 06:25:41,110: Train batch 86400: loss: 0.00 grad norm: 0.20 time: 0.131 2025-09-16 06:26:13,100: Train batch 86600: loss: 0.00 grad norm: 0.16 time: 0.123 2025-09-16 06:26:45,128: Train batch 86800: loss: 0.00 grad norm: 0.11 time: 0.096 2025-09-16 06:27:17,209: Train batch 87000: loss: 0.00 grad norm: 0.06 time: 0.132 2025-09-16 06:27:49,343: Train batch 87200: loss: 0.01 grad norm: 0.33 time: 0.144 2025-09-16 06:28:21,332: Train batch 87400: loss: 0.00 grad norm: 0.06 time: 0.148 2025-09-16 06:28:53,517: Train batch 87600: loss: 0.01 grad norm: 0.81 time: 0.175 2025-09-16 06:29:25,580: Train batch 87800: loss: 0.00 grad norm: 0.16 time: 0.160 2025-09-16 06:29:57,480: Train batch 88000: loss: 0.00 grad norm: 0.08 time: 0.122 2025-09-16 06:29:57,480: Running test after training batch: 88000 2025-09-16 06:30:08,422: Val batch 88000: PER (avg): 0.1092 CTC Loss (avg): 27.7245 time: 10.942 2025-09-16 06:30:08,422: t15.2023.08.13 val PER: 0.0894 2025-09-16 06:30:08,423: t15.2023.08.18 val PER: 0.0771 2025-09-16 06:30:08,423: t15.2023.08.20 val PER: 0.0596 2025-09-16 06:30:08,423: t15.2023.08.25 val PER: 0.0919 2025-09-16 06:30:08,423: t15.2023.08.27 val PER: 0.1640 2025-09-16 06:30:08,423: t15.2023.09.01 val PER: 0.0487 2025-09-16 06:30:08,423: t15.2023.09.03 val PER: 0.1164 2025-09-16 06:30:08,423: t15.2023.09.24 val PER: 0.1007 2025-09-16 06:30:08,423: t15.2023.09.29 val PER: 0.1002 2025-09-16 06:30:08,423: t15.2023.10.01 val PER: 0.1499 2025-09-16 06:30:08,423: t15.2023.10.06 val PER: 0.0549 2025-09-16 06:30:08,423: t15.2023.10.08 val PER: 0.1949 2025-09-16 06:30:08,423: t15.2023.10.13 val PER: 0.1652 2025-09-16 06:30:08,423: t15.2023.10.15 val PER: 0.1094 2025-09-16 06:30:08,423: t15.2023.10.20 val PER: 0.1678 2025-09-16 06:30:08,423: t15.2023.10.22 val PER: 0.1047 2025-09-16 06:30:08,423: t15.2023.11.03 val PER: 0.1703 2025-09-16 06:30:08,423: t15.2023.11.04 val PER: 0.0068 2025-09-16 06:30:08,423: t15.2023.11.17 val PER: 0.0218 2025-09-16 06:30:08,423: t15.2023.11.19 val PER: 0.0100 2025-09-16 06:30:08,424: t15.2023.11.26 val PER: 0.0493 2025-09-16 06:30:08,424: t15.2023.12.03 val PER: 0.0609 2025-09-16 06:30:08,424: t15.2023.12.08 val PER: 0.0379 2025-09-16 06:30:08,424: t15.2023.12.10 val PER: 0.0394 2025-09-16 06:30:08,424: t15.2023.12.17 val PER: 0.0780 2025-09-16 06:30:08,424: t15.2023.12.29 val PER: 0.0769 2025-09-16 06:30:08,424: t15.2024.02.25 val PER: 0.0857 2025-09-16 06:30:08,424: t15.2024.03.08 val PER: 0.1693 2025-09-16 06:30:08,424: t15.2024.03.15 val PER: 0.1707 2025-09-16 06:30:08,424: t15.2024.03.17 val PER: 0.0697 2025-09-16 06:30:08,424: t15.2024.05.10 val PER: 0.1248 2025-09-16 06:30:08,424: t15.2024.06.14 val PER: 0.1199 2025-09-16 06:30:08,424: t15.2024.07.19 val PER: 0.1701 2025-09-16 06:30:08,424: t15.2024.07.21 val PER: 0.0538 2025-09-16 06:30:08,424: t15.2024.07.28 val PER: 0.0816 2025-09-16 06:30:08,424: t15.2025.01.10 val PER: 0.2603 2025-09-16 06:30:08,424: t15.2025.01.12 val PER: 0.0793 2025-09-16 06:30:08,424: t15.2025.03.14 val PER: 0.2751 2025-09-16 06:30:08,425: t15.2025.03.16 val PER: 0.1479 2025-09-16 06:30:08,425: t15.2025.03.30 val PER: 0.2241 2025-09-16 06:30:08,425: t15.2025.04.13 val PER: 0.2011 2025-09-16 06:30:36,675: Train batch 88200: loss: 0.01 grad norm: 0.22 time: 0.111 2025-09-16 06:31:09,322: Train batch 88400: loss: 0.02 grad norm: 2.04 time: 0.166 2025-09-16 06:31:41,338: Train batch 88600: loss: 0.01 grad norm: 0.86 time: 0.132 2025-09-16 06:32:13,864: Train batch 88800: loss: 0.00 grad norm: 0.09 time: 0.118 2025-09-16 06:32:46,601: Train batch 89000: loss: 0.01 grad norm: 0.69 time: 0.126 2025-09-16 06:33:19,032: Train batch 89200: loss: 0.00 grad norm: 0.07 time: 0.127 2025-09-16 06:33:51,445: Train batch 89400: loss: 0.00 grad norm: 0.19 time: 0.136 2025-09-16 06:34:23,875: Train batch 89600: loss: 0.01 grad norm: 1.75 time: 0.111 2025-09-16 06:34:55,699: Train batch 89800: loss: 0.00 grad norm: 0.28 time: 0.147 2025-09-16 06:35:28,075: Train batch 90000: loss: 0.01 grad norm: 0.38 time: 0.145 2025-09-16 06:35:28,075: Running test after training batch: 90000 2025-09-16 06:35:38,705: Val batch 90000: PER (avg): 0.1089 CTC Loss (avg): 27.4956 time: 10.630 2025-09-16 06:35:38,706: t15.2023.08.13 val PER: 0.0852 2025-09-16 06:35:38,706: t15.2023.08.18 val PER: 0.0712 2025-09-16 06:35:38,706: t15.2023.08.20 val PER: 0.0604 2025-09-16 06:35:38,706: t15.2023.08.25 val PER: 0.0919 2025-09-16 06:35:38,706: t15.2023.08.27 val PER: 0.1704 2025-09-16 06:35:38,706: t15.2023.09.01 val PER: 0.0511 2025-09-16 06:35:38,706: t15.2023.09.03 val PER: 0.1211 2025-09-16 06:35:38,706: t15.2023.09.24 val PER: 0.1007 2025-09-16 06:35:38,706: t15.2023.09.29 val PER: 0.1015 2025-09-16 06:35:38,706: t15.2023.10.01 val PER: 0.1493 2025-09-16 06:35:38,706: t15.2023.10.06 val PER: 0.0571 2025-09-16 06:35:38,706: t15.2023.10.08 val PER: 0.1949 2025-09-16 06:35:38,706: t15.2023.10.13 val PER: 0.1715 2025-09-16 06:35:38,706: t15.2023.10.15 val PER: 0.1088 2025-09-16 06:35:38,706: t15.2023.10.20 val PER: 0.1812 2025-09-16 06:35:38,707: t15.2023.10.22 val PER: 0.1047 2025-09-16 06:35:38,707: t15.2023.11.03 val PER: 0.1669 2025-09-16 06:35:38,707: t15.2023.11.04 val PER: 0.0034 2025-09-16 06:35:38,707: t15.2023.11.17 val PER: 0.0202 2025-09-16 06:35:38,707: t15.2023.11.19 val PER: 0.0080 2025-09-16 06:35:38,707: t15.2023.11.26 val PER: 0.0486 2025-09-16 06:35:38,707: t15.2023.12.03 val PER: 0.0546 2025-09-16 06:35:38,707: t15.2023.12.08 val PER: 0.0379 2025-09-16 06:35:38,707: t15.2023.12.10 val PER: 0.0394 2025-09-16 06:35:38,707: t15.2023.12.17 val PER: 0.0769 2025-09-16 06:35:38,707: t15.2023.12.29 val PER: 0.0762 2025-09-16 06:35:38,707: t15.2024.02.25 val PER: 0.0871 2025-09-16 06:35:38,707: t15.2024.03.08 val PER: 0.1664 2025-09-16 06:35:38,707: t15.2024.03.15 val PER: 0.1720 2025-09-16 06:35:38,707: t15.2024.03.17 val PER: 0.0760 2025-09-16 06:35:38,707: t15.2024.05.10 val PER: 0.1129 2025-09-16 06:35:38,707: t15.2024.06.14 val PER: 0.1183 2025-09-16 06:35:38,707: t15.2024.07.19 val PER: 0.1668 2025-09-16 06:35:38,707: t15.2024.07.21 val PER: 0.0538 2025-09-16 06:35:38,707: t15.2024.07.28 val PER: 0.0801 2025-09-16 06:35:38,708: t15.2025.01.10 val PER: 0.2548 2025-09-16 06:35:38,708: t15.2025.01.12 val PER: 0.0870 2025-09-16 06:35:38,708: t15.2025.03.14 val PER: 0.2722 2025-09-16 06:35:38,708: t15.2025.03.16 val PER: 0.1309 2025-09-16 06:35:38,708: t15.2025.03.30 val PER: 0.2276 2025-09-16 06:35:38,708: t15.2025.04.13 val PER: 0.2054 2025-09-16 06:36:05,524: Train batch 90200: loss: 0.01 grad norm: 0.27 time: 0.118 2025-09-16 06:36:37,513: Train batch 90400: loss: 0.00 grad norm: 0.31 time: 0.108 2025-09-16 06:37:08,914: Train batch 90600: loss: 0.00 grad norm: 0.36 time: 0.117 2025-09-16 06:37:41,571: Train batch 90800: loss: 0.00 grad norm: 0.13 time: 0.153 2025-09-16 06:38:13,598: Train batch 91000: loss: 0.01 grad norm: 1.33 time: 0.109 2025-09-16 06:38:45,975: Train batch 91200: loss: 0.00 grad norm: 0.09 time: 0.180 2025-09-16 06:39:17,835: Train batch 91400: loss: 0.00 grad norm: 0.12 time: 0.152 2025-09-16 06:39:50,697: Train batch 91600: loss: 0.01 grad norm: 0.44 time: 0.131 2025-09-16 06:40:23,406: Train batch 91800: loss: 0.00 grad norm: 0.53 time: 0.121 2025-09-16 06:40:56,664: Train batch 92000: loss: 0.00 grad norm: 0.31 time: 0.124 2025-09-16 06:40:56,665: Running test after training batch: 92000 2025-09-16 06:41:07,242: Val batch 92000: PER (avg): 0.1083 CTC Loss (avg): 27.5832 time: 10.577 2025-09-16 06:41:07,242: t15.2023.08.13 val PER: 0.0936 2025-09-16 06:41:07,242: t15.2023.08.18 val PER: 0.0738 2025-09-16 06:41:07,243: t15.2023.08.20 val PER: 0.0548 2025-09-16 06:41:07,243: t15.2023.08.25 val PER: 0.0919 2025-09-16 06:41:07,243: t15.2023.08.27 val PER: 0.1785 2025-09-16 06:41:07,243: t15.2023.09.01 val PER: 0.0503 2025-09-16 06:41:07,243: t15.2023.09.03 val PER: 0.1164 2025-09-16 06:41:07,243: t15.2023.09.24 val PER: 0.0934 2025-09-16 06:41:07,243: t15.2023.09.29 val PER: 0.0996 2025-09-16 06:41:07,243: t15.2023.10.01 val PER: 0.1453 2025-09-16 06:41:07,243: t15.2023.10.06 val PER: 0.0571 2025-09-16 06:41:07,243: t15.2023.10.08 val PER: 0.1922 2025-09-16 06:41:07,243: t15.2023.10.13 val PER: 0.1652 2025-09-16 06:41:07,243: t15.2023.10.15 val PER: 0.1088 2025-09-16 06:41:07,243: t15.2023.10.20 val PER: 0.1745 2025-09-16 06:41:07,243: t15.2023.10.22 val PER: 0.1058 2025-09-16 06:41:07,243: t15.2023.11.03 val PER: 0.1662 2025-09-16 06:41:07,243: t15.2023.11.04 val PER: 0.0068 2025-09-16 06:41:07,243: t15.2023.11.17 val PER: 0.0218 2025-09-16 06:41:07,243: t15.2023.11.19 val PER: 0.0080 2025-09-16 06:41:07,243: t15.2023.11.26 val PER: 0.0478 2025-09-16 06:41:07,244: t15.2023.12.03 val PER: 0.0609 2025-09-16 06:41:07,244: t15.2023.12.08 val PER: 0.0406 2025-09-16 06:41:07,244: t15.2023.12.10 val PER: 0.0394 2025-09-16 06:41:07,244: t15.2023.12.17 val PER: 0.0780 2025-09-16 06:41:07,244: t15.2023.12.29 val PER: 0.0837 2025-09-16 06:41:07,244: t15.2024.02.25 val PER: 0.0815 2025-09-16 06:41:07,244: t15.2024.03.08 val PER: 0.1650 2025-09-16 06:41:07,244: t15.2024.03.15 val PER: 0.1720 2025-09-16 06:41:07,244: t15.2024.03.17 val PER: 0.0760 2025-09-16 06:41:07,244: t15.2024.05.10 val PER: 0.1174 2025-09-16 06:41:07,244: t15.2024.06.14 val PER: 0.1183 2025-09-16 06:41:07,244: t15.2024.07.19 val PER: 0.1681 2025-09-16 06:41:07,244: t15.2024.07.21 val PER: 0.0572 2025-09-16 06:41:07,244: t15.2024.07.28 val PER: 0.0765 2025-09-16 06:41:07,244: t15.2025.01.10 val PER: 0.2452 2025-09-16 06:41:07,244: t15.2025.01.12 val PER: 0.0785 2025-09-16 06:41:07,244: t15.2025.03.14 val PER: 0.2751 2025-09-16 06:41:07,244: t15.2025.03.16 val PER: 0.1270 2025-09-16 06:41:07,244: t15.2025.03.30 val PER: 0.2264 2025-09-16 06:41:07,245: t15.2025.04.13 val PER: 0.1997 2025-09-16 06:41:35,676: Train batch 92200: loss: 0.02 grad norm: 3.97 time: 0.180 2025-09-16 06:42:07,431: Train batch 92400: loss: 0.00 grad norm: 0.10 time: 0.161 2025-09-16 06:42:39,661: Train batch 92600: loss: 0.01 grad norm: 0.32 time: 0.177 2025-09-16 06:43:10,756: Train batch 92800: loss: 0.01 grad norm: 1.65 time: 0.157 2025-09-16 06:43:43,887: Train batch 93000: loss: 0.00 grad norm: 0.13 time: 0.175 2025-09-16 06:44:15,975: Train batch 93200: loss: 0.01 grad norm: 0.73 time: 0.117 2025-09-16 06:44:48,526: Train batch 93400: loss: 0.01 grad norm: 0.41 time: 0.134 2025-09-16 06:45:21,521: Train batch 93600: loss: 0.00 grad norm: 0.17 time: 0.170 2025-09-16 06:45:53,556: Train batch 93800: loss: 0.01 grad norm: 0.74 time: 0.137 2025-09-16 06:46:25,792: Train batch 94000: loss: 0.00 grad norm: 0.19 time: 0.129 2025-09-16 06:46:25,793: Running test after training batch: 94000 2025-09-16 06:46:36,498: Val batch 94000: PER (avg): 0.1080 CTC Loss (avg): 27.7370 time: 10.705 2025-09-16 06:46:36,498: t15.2023.08.13 val PER: 0.0894 2025-09-16 06:46:36,498: t15.2023.08.18 val PER: 0.0721 2025-09-16 06:46:36,498: t15.2023.08.20 val PER: 0.0572 2025-09-16 06:46:36,498: t15.2023.08.25 val PER: 0.0919 2025-09-16 06:46:36,498: t15.2023.08.27 val PER: 0.1736 2025-09-16 06:46:36,498: t15.2023.09.01 val PER: 0.0495 2025-09-16 06:46:36,498: t15.2023.09.03 val PER: 0.1128 2025-09-16 06:46:36,499: t15.2023.09.24 val PER: 0.0959 2025-09-16 06:46:36,499: t15.2023.09.29 val PER: 0.0970 2025-09-16 06:46:36,499: t15.2023.10.01 val PER: 0.1473 2025-09-16 06:46:36,499: t15.2023.10.06 val PER: 0.0592 2025-09-16 06:46:36,499: t15.2023.10.08 val PER: 0.1922 2025-09-16 06:46:36,499: t15.2023.10.13 val PER: 0.1660 2025-09-16 06:46:36,499: t15.2023.10.15 val PER: 0.1022 2025-09-16 06:46:36,499: t15.2023.10.20 val PER: 0.1711 2025-09-16 06:46:36,499: t15.2023.10.22 val PER: 0.1036 2025-09-16 06:46:36,499: t15.2023.11.03 val PER: 0.1642 2025-09-16 06:46:36,499: t15.2023.11.04 val PER: 0.0102 2025-09-16 06:46:36,499: t15.2023.11.17 val PER: 0.0249 2025-09-16 06:46:36,499: t15.2023.11.19 val PER: 0.0120 2025-09-16 06:46:36,499: t15.2023.11.26 val PER: 0.0478 2025-09-16 06:46:36,499: t15.2023.12.03 val PER: 0.0609 2025-09-16 06:46:36,499: t15.2023.12.08 val PER: 0.0393 2025-09-16 06:46:36,499: t15.2023.12.10 val PER: 0.0381 2025-09-16 06:46:36,499: t15.2023.12.17 val PER: 0.0842 2025-09-16 06:46:36,499: t15.2023.12.29 val PER: 0.0803 2025-09-16 06:46:36,500: t15.2024.02.25 val PER: 0.0843 2025-09-16 06:46:36,500: t15.2024.03.08 val PER: 0.1679 2025-09-16 06:46:36,500: t15.2024.03.15 val PER: 0.1745 2025-09-16 06:46:36,500: t15.2024.03.17 val PER: 0.0746 2025-09-16 06:46:36,500: t15.2024.05.10 val PER: 0.1204 2025-09-16 06:46:36,500: t15.2024.06.14 val PER: 0.1246 2025-09-16 06:46:36,500: t15.2024.07.19 val PER: 0.1635 2025-09-16 06:46:36,500: t15.2024.07.21 val PER: 0.0524 2025-09-16 06:46:36,500: t15.2024.07.28 val PER: 0.0794 2025-09-16 06:46:36,500: t15.2025.01.10 val PER: 0.2493 2025-09-16 06:46:36,500: t15.2025.01.12 val PER: 0.0855 2025-09-16 06:46:36,500: t15.2025.03.14 val PER: 0.2692 2025-09-16 06:46:36,500: t15.2025.03.16 val PER: 0.1283 2025-09-16 06:46:36,500: t15.2025.03.30 val PER: 0.2207 2025-09-16 06:46:36,500: t15.2025.04.13 val PER: 0.2026 2025-09-16 06:47:04,152: Train batch 94200: loss: 0.00 grad norm: 0.08 time: 0.102 2025-09-16 06:47:36,199: Train batch 94400: loss: 0.00 grad norm: 0.14 time: 0.132 2025-09-16 06:48:08,154: Train batch 94600: loss: 0.00 grad norm: 0.26 time: 0.115 2025-09-16 06:48:40,407: Train batch 94800: loss: 0.08 grad norm: 0.80 time: 0.145 2025-09-16 06:49:12,141: Train batch 95000: loss: 0.01 grad norm: 0.29 time: 0.140 2025-09-16 06:49:44,470: Train batch 95200: loss: 0.01 grad norm: 0.58 time: 0.107 2025-09-16 06:50:16,202: Train batch 95400: loss: 0.00 grad norm: 0.12 time: 0.114 2025-09-16 06:50:48,773: Train batch 95600: loss: 0.01 grad norm: 0.72 time: 0.172 2025-09-16 06:51:21,242: Train batch 95800: loss: 0.01 grad norm: 1.98 time: 0.132 2025-09-16 06:51:53,698: Train batch 96000: loss: 0.00 grad norm: 0.12 time: 0.126 2025-09-16 06:51:53,698: Running test after training batch: 96000 2025-09-16 06:52:04,686: Val batch 96000: PER (avg): 0.1079 CTC Loss (avg): 27.6534 time: 10.988 2025-09-16 06:52:04,686: t15.2023.08.13 val PER: 0.0873 2025-09-16 06:52:04,686: t15.2023.08.18 val PER: 0.0746 2025-09-16 06:52:04,686: t15.2023.08.20 val PER: 0.0564 2025-09-16 06:52:04,686: t15.2023.08.25 val PER: 0.0904 2025-09-16 06:52:04,686: t15.2023.08.27 val PER: 0.1736 2025-09-16 06:52:04,686: t15.2023.09.01 val PER: 0.0536 2025-09-16 06:52:04,686: t15.2023.09.03 val PER: 0.1176 2025-09-16 06:52:04,686: t15.2023.09.24 val PER: 0.0983 2025-09-16 06:52:04,687: t15.2023.09.29 val PER: 0.0983 2025-09-16 06:52:04,687: t15.2023.10.01 val PER: 0.1480 2025-09-16 06:52:04,687: t15.2023.10.06 val PER: 0.0592 2025-09-16 06:52:04,687: t15.2023.10.08 val PER: 0.1922 2025-09-16 06:52:04,687: t15.2023.10.13 val PER: 0.1645 2025-09-16 06:52:04,687: t15.2023.10.15 val PER: 0.1081 2025-09-16 06:52:04,687: t15.2023.10.20 val PER: 0.1745 2025-09-16 06:52:04,687: t15.2023.10.22 val PER: 0.1036 2025-09-16 06:52:04,687: t15.2023.11.03 val PER: 0.1642 2025-09-16 06:52:04,687: t15.2023.11.04 val PER: 0.0068 2025-09-16 06:52:04,687: t15.2023.11.17 val PER: 0.0218 2025-09-16 06:52:04,687: t15.2023.11.19 val PER: 0.0100 2025-09-16 06:52:04,687: t15.2023.11.26 val PER: 0.0493 2025-09-16 06:52:04,687: t15.2023.12.03 val PER: 0.0578 2025-09-16 06:52:04,687: t15.2023.12.08 val PER: 0.0406 2025-09-16 06:52:04,687: t15.2023.12.10 val PER: 0.0407 2025-09-16 06:52:04,687: t15.2023.12.17 val PER: 0.0790 2025-09-16 06:52:04,687: t15.2023.12.29 val PER: 0.0796 2025-09-16 06:52:04,687: t15.2024.02.25 val PER: 0.0857 2025-09-16 06:52:04,687: t15.2024.03.08 val PER: 0.1664 2025-09-16 06:52:04,688: t15.2024.03.15 val PER: 0.1707 2025-09-16 06:52:04,688: t15.2024.03.17 val PER: 0.0732 2025-09-16 06:52:04,688: t15.2024.05.10 val PER: 0.1174 2025-09-16 06:52:04,688: t15.2024.06.14 val PER: 0.1246 2025-09-16 06:52:04,688: t15.2024.07.19 val PER: 0.1648 2025-09-16 06:52:04,688: t15.2024.07.21 val PER: 0.0531 2025-09-16 06:52:04,688: t15.2024.07.28 val PER: 0.0809 2025-09-16 06:52:04,688: t15.2025.01.10 val PER: 0.2479 2025-09-16 06:52:04,688: t15.2025.01.12 val PER: 0.0754 2025-09-16 06:52:04,688: t15.2025.03.14 val PER: 0.2737 2025-09-16 06:52:04,688: t15.2025.03.16 val PER: 0.1257 2025-09-16 06:52:04,688: t15.2025.03.30 val PER: 0.2172 2025-09-16 06:52:04,688: t15.2025.04.13 val PER: 0.2026 2025-09-16 06:52:04,688: New best test PER 0.1079 --> 0.1079 2025-09-16 06:52:04,688: Checkpointing model 2025-09-16 06:52:05,992: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 06:52:33,912: Train batch 96200: loss: 0.00 grad norm: 0.11 time: 0.145 2025-09-16 06:53:06,262: Train batch 96400: loss: 0.00 grad norm: 0.41 time: 0.095 2025-09-16 06:53:38,141: Train batch 96600: loss: 0.01 grad norm: 0.76 time: 0.158 2025-09-16 06:54:10,322: Train batch 96800: loss: 0.01 grad norm: 0.25 time: 0.110 2025-09-16 06:54:42,427: Train batch 97000: loss: 0.01 grad norm: 0.47 time: 0.172 2025-09-16 06:55:14,152: Train batch 97200: loss: 0.01 grad norm: 1.05 time: 0.119 2025-09-16 06:55:46,792: Train batch 97400: loss: 0.01 grad norm: 1.28 time: 0.155 2025-09-16 06:56:19,555: Train batch 97600: loss: 0.00 grad norm: 0.14 time: 0.117 2025-09-16 06:56:51,958: Train batch 97800: loss: 0.00 grad norm: 0.06 time: 0.136 2025-09-16 06:57:24,609: Train batch 98000: loss: 0.00 grad norm: 0.10 time: 0.134 2025-09-16 06:57:24,609: Running test after training batch: 98000 2025-09-16 06:57:35,324: Val batch 98000: PER (avg): 0.1078 CTC Loss (avg): 27.5792 time: 10.714 2025-09-16 06:57:35,324: t15.2023.08.13 val PER: 0.0842 2025-09-16 06:57:35,324: t15.2023.08.18 val PER: 0.0729 2025-09-16 06:57:35,324: t15.2023.08.20 val PER: 0.0588 2025-09-16 06:57:35,325: t15.2023.08.25 val PER: 0.0904 2025-09-16 06:57:35,325: t15.2023.08.27 val PER: 0.1704 2025-09-16 06:57:35,325: t15.2023.09.01 val PER: 0.0503 2025-09-16 06:57:35,325: t15.2023.09.03 val PER: 0.1105 2025-09-16 06:57:35,325: t15.2023.09.24 val PER: 0.0947 2025-09-16 06:57:35,325: t15.2023.09.29 val PER: 0.1021 2025-09-16 06:57:35,325: t15.2023.10.01 val PER: 0.1480 2025-09-16 06:57:35,325: t15.2023.10.06 val PER: 0.0614 2025-09-16 06:57:35,325: t15.2023.10.08 val PER: 0.1908 2025-09-16 06:57:35,325: t15.2023.10.13 val PER: 0.1637 2025-09-16 06:57:35,325: t15.2023.10.15 val PER: 0.1048 2025-09-16 06:57:35,325: t15.2023.10.20 val PER: 0.1745 2025-09-16 06:57:35,325: t15.2023.10.22 val PER: 0.1058 2025-09-16 06:57:35,325: t15.2023.11.03 val PER: 0.1594 2025-09-16 06:57:35,325: t15.2023.11.04 val PER: 0.0068 2025-09-16 06:57:35,325: t15.2023.11.17 val PER: 0.0218 2025-09-16 06:57:35,325: t15.2023.11.19 val PER: 0.0120 2025-09-16 06:57:35,325: t15.2023.11.26 val PER: 0.0493 2025-09-16 06:57:35,325: t15.2023.12.03 val PER: 0.0578 2025-09-16 06:57:35,325: t15.2023.12.08 val PER: 0.0413 2025-09-16 06:57:35,326: t15.2023.12.10 val PER: 0.0420 2025-09-16 06:57:35,326: t15.2023.12.17 val PER: 0.0863 2025-09-16 06:57:35,326: t15.2023.12.29 val PER: 0.0755 2025-09-16 06:57:35,326: t15.2024.02.25 val PER: 0.0829 2025-09-16 06:57:35,326: t15.2024.03.08 val PER: 0.1693 2025-09-16 06:57:35,326: t15.2024.03.15 val PER: 0.1751 2025-09-16 06:57:35,326: t15.2024.03.17 val PER: 0.0690 2025-09-16 06:57:35,326: t15.2024.05.10 val PER: 0.1204 2025-09-16 06:57:35,326: t15.2024.06.14 val PER: 0.1215 2025-09-16 06:57:35,326: t15.2024.07.19 val PER: 0.1655 2025-09-16 06:57:35,326: t15.2024.07.21 val PER: 0.0531 2025-09-16 06:57:35,326: t15.2024.07.28 val PER: 0.0824 2025-09-16 06:57:35,326: t15.2025.01.10 val PER: 0.2438 2025-09-16 06:57:35,326: t15.2025.01.12 val PER: 0.0801 2025-09-16 06:57:35,326: t15.2025.03.14 val PER: 0.2751 2025-09-16 06:57:35,326: t15.2025.03.16 val PER: 0.1230 2025-09-16 06:57:35,326: t15.2025.03.30 val PER: 0.2230 2025-09-16 06:57:35,326: t15.2025.04.13 val PER: 0.2040 2025-09-16 06:57:35,326: New best test PER 0.1079 --> 0.1078 2025-09-16 06:57:35,326: Checkpointing model 2025-09-16 06:57:36,663: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 06:58:04,611: Train batch 98200: loss: 0.01 grad norm: 0.60 time: 0.125 2025-09-16 06:58:37,090: Train batch 98400: loss: 0.00 grad norm: 0.16 time: 0.147 2025-09-16 06:59:09,148: Train batch 98600: loss: 0.00 grad norm: 0.55 time: 0.126 2025-09-16 06:59:41,806: Train batch 98800: loss: 0.00 grad norm: 0.15 time: 0.156 2025-09-16 07:00:14,220: Train batch 99000: loss: 0.00 grad norm: 0.25 time: 0.123 2025-09-16 07:00:47,188: Train batch 99200: loss: 0.00 grad norm: 0.11 time: 0.145 2025-09-16 07:01:19,764: Train batch 99400: loss: 0.00 grad norm: 0.07 time: 0.130 2025-09-16 07:01:52,194: Train batch 99600: loss: 0.00 grad norm: 0.26 time: 0.134 2025-09-16 07:02:24,810: Train batch 99800: loss: 0.03 grad norm: 4.62 time: 0.119 2025-09-16 07:02:56,775: Train batch 100000: loss: 0.01 grad norm: 0.28 time: 0.121 2025-09-16 07:02:56,776: Running test after training batch: 100000 2025-09-16 07:03:07,480: Val batch 100000: PER (avg): 0.1077 CTC Loss (avg): 27.4728 time: 10.705 2025-09-16 07:03:07,481: t15.2023.08.13 val PER: 0.0821 2025-09-16 07:03:07,481: t15.2023.08.18 val PER: 0.0721 2025-09-16 07:03:07,481: t15.2023.08.20 val PER: 0.0572 2025-09-16 07:03:07,481: t15.2023.08.25 val PER: 0.0904 2025-09-16 07:03:07,481: t15.2023.08.27 val PER: 0.1752 2025-09-16 07:03:07,481: t15.2023.09.01 val PER: 0.0511 2025-09-16 07:03:07,481: t15.2023.09.03 val PER: 0.1116 2025-09-16 07:03:07,481: t15.2023.09.24 val PER: 0.0959 2025-09-16 07:03:07,481: t15.2023.09.29 val PER: 0.1008 2025-09-16 07:03:07,481: t15.2023.10.01 val PER: 0.1453 2025-09-16 07:03:07,482: t15.2023.10.06 val PER: 0.0571 2025-09-16 07:03:07,482: t15.2023.10.08 val PER: 0.1908 2025-09-16 07:03:07,482: t15.2023.10.13 val PER: 0.1621 2025-09-16 07:03:07,482: t15.2023.10.15 val PER: 0.1061 2025-09-16 07:03:07,482: t15.2023.10.20 val PER: 0.1779 2025-09-16 07:03:07,482: t15.2023.10.22 val PER: 0.1047 2025-09-16 07:03:07,482: t15.2023.11.03 val PER: 0.1655 2025-09-16 07:03:07,482: t15.2023.11.04 val PER: 0.0068 2025-09-16 07:03:07,482: t15.2023.11.17 val PER: 0.0233 2025-09-16 07:03:07,482: t15.2023.11.19 val PER: 0.0120 2025-09-16 07:03:07,482: t15.2023.11.26 val PER: 0.0471 2025-09-16 07:03:07,482: t15.2023.12.03 val PER: 0.0599 2025-09-16 07:03:07,482: t15.2023.12.08 val PER: 0.0406 2025-09-16 07:03:07,482: t15.2023.12.10 val PER: 0.0381 2025-09-16 07:03:07,482: t15.2023.12.17 val PER: 0.0821 2025-09-16 07:03:07,482: t15.2023.12.29 val PER: 0.0789 2025-09-16 07:03:07,482: t15.2024.02.25 val PER: 0.0899 2025-09-16 07:03:07,482: t15.2024.03.08 val PER: 0.1607 2025-09-16 07:03:07,482: t15.2024.03.15 val PER: 0.1739 2025-09-16 07:03:07,483: t15.2024.03.17 val PER: 0.0725 2025-09-16 07:03:07,483: t15.2024.05.10 val PER: 0.1189 2025-09-16 07:03:07,483: t15.2024.06.14 val PER: 0.1293 2025-09-16 07:03:07,483: t15.2024.07.19 val PER: 0.1622 2025-09-16 07:03:07,483: t15.2024.07.21 val PER: 0.0559 2025-09-16 07:03:07,483: t15.2024.07.28 val PER: 0.0765 2025-09-16 07:03:07,483: t15.2025.01.10 val PER: 0.2424 2025-09-16 07:03:07,483: t15.2025.01.12 val PER: 0.0816 2025-09-16 07:03:07,483: t15.2025.03.14 val PER: 0.2678 2025-09-16 07:03:07,483: t15.2025.03.16 val PER: 0.1270 2025-09-16 07:03:07,483: t15.2025.03.30 val PER: 0.2276 2025-09-16 07:03:07,483: t15.2025.04.13 val PER: 0.2026 2025-09-16 07:03:07,483: New best test PER 0.1078 --> 0.1077 2025-09-16 07:03:07,483: Checkpointing model 2025-09-16 07:03:08,773: Saved model to checkpoint: trained_models/baseline_rnn/checkpoint/best_checkpoint 2025-09-16 07:03:37,330: Train batch 100200: loss: 0.03 grad norm: 5.07 time: 0.151 2025-09-16 07:04:10,779: Train batch 100400: loss: 0.00 grad norm: 0.35 time: 0.127 2025-09-16 07:04:43,112: Train batch 100600: loss: 0.01 grad norm: 0.84 time: 0.154 2025-09-16 07:05:15,609: Train batch 100800: loss: 0.01 grad norm: 0.35 time: 0.155 2025-09-16 07:05:48,015: Train batch 101000: loss: 0.00 grad norm: 0.07 time: 0.143 2025-09-16 07:06:20,888: Train batch 101200: loss: 0.00 grad norm: 0.10 time: 0.116 2025-09-16 07:06:53,612: Train batch 101400: loss: 0.00 grad norm: 0.49 time: 0.157 2025-09-16 07:07:26,208: Train batch 101600: loss: 0.00 grad norm: 0.19 time: 0.127 2025-09-16 07:07:58,766: Train batch 101800: loss: 0.00 grad norm: 0.10 time: 0.141 2025-09-16 07:08:31,142: Train batch 102000: loss: 0.00 grad norm: 0.24 time: 0.163 2025-09-16 07:08:31,143: Running test after training batch: 102000 2025-09-16 07:08:41,838: Val batch 102000: PER (avg): 0.1085 CTC Loss (avg): 27.5049 time: 10.695 2025-09-16 07:08:41,839: t15.2023.08.13 val PER: 0.0863 2025-09-16 07:08:41,839: t15.2023.08.18 val PER: 0.0729 2025-09-16 07:08:41,839: t15.2023.08.20 val PER: 0.0588 2025-09-16 07:08:41,839: t15.2023.08.25 val PER: 0.0904 2025-09-16 07:08:41,839: t15.2023.08.27 val PER: 0.1672 2025-09-16 07:08:41,839: t15.2023.09.01 val PER: 0.0511 2025-09-16 07:08:41,839: t15.2023.09.03 val PER: 0.1128 2025-09-16 07:08:41,839: t15.2023.09.24 val PER: 0.1032 2025-09-16 07:08:41,839: t15.2023.09.29 val PER: 0.1002 2025-09-16 07:08:41,839: t15.2023.10.01 val PER: 0.1493 2025-09-16 07:08:41,839: t15.2023.10.06 val PER: 0.0571 2025-09-16 07:08:41,839: t15.2023.10.08 val PER: 0.1908 2025-09-16 07:08:41,840: t15.2023.10.13 val PER: 0.1637 2025-09-16 07:08:41,840: t15.2023.10.15 val PER: 0.1074 2025-09-16 07:08:41,840: t15.2023.10.20 val PER: 0.1711 2025-09-16 07:08:41,840: t15.2023.10.22 val PER: 0.1058 2025-09-16 07:08:41,840: t15.2023.11.03 val PER: 0.1635 2025-09-16 07:08:41,840: t15.2023.11.04 val PER: 0.0068 2025-09-16 07:08:41,840: t15.2023.11.17 val PER: 0.0218 2025-09-16 07:08:41,840: t15.2023.11.19 val PER: 0.0100 2025-09-16 07:08:41,840: t15.2023.11.26 val PER: 0.0514 2025-09-16 07:08:41,840: t15.2023.12.03 val PER: 0.0588 2025-09-16 07:08:41,840: t15.2023.12.08 val PER: 0.0413 2025-09-16 07:08:41,840: t15.2023.12.10 val PER: 0.0407 2025-09-16 07:08:41,840: t15.2023.12.17 val PER: 0.0790 2025-09-16 07:08:41,840: t15.2023.12.29 val PER: 0.0817 2025-09-16 07:08:41,840: t15.2024.02.25 val PER: 0.0927 2025-09-16 07:08:41,840: t15.2024.03.08 val PER: 0.1664 2025-09-16 07:08:41,840: t15.2024.03.15 val PER: 0.1701 2025-09-16 07:08:41,840: t15.2024.03.17 val PER: 0.0704 2025-09-16 07:08:41,840: t15.2024.05.10 val PER: 0.1263 2025-09-16 07:08:41,841: t15.2024.06.14 val PER: 0.1262 2025-09-16 07:08:41,841: t15.2024.07.19 val PER: 0.1628 2025-09-16 07:08:41,841: t15.2024.07.21 val PER: 0.0538 2025-09-16 07:08:41,841: t15.2024.07.28 val PER: 0.0824 2025-09-16 07:08:41,841: t15.2025.01.10 val PER: 0.2410 2025-09-16 07:08:41,841: t15.2025.01.12 val PER: 0.0831 2025-09-16 07:08:41,841: t15.2025.03.14 val PER: 0.2648 2025-09-16 07:08:41,841: t15.2025.03.16 val PER: 0.1257 2025-09-16 07:08:41,841: t15.2025.03.30 val PER: 0.2333 2025-09-16 07:08:41,841: t15.2025.04.13 val PER: 0.2083 2025-09-16 07:09:09,949: Train batch 102200: loss: 0.00 grad norm: 0.09 time: 0.117 2025-09-16 07:09:42,500: Train batch 102400: loss: 0.00 grad norm: 0.07 time: 0.169 2025-09-16 07:10:14,908: Train batch 102600: loss: 0.01 grad norm: 0.22 time: 0.119 2025-09-16 07:10:47,562: Train batch 102800: loss: 0.01 grad norm: 1.57 time: 0.115 2025-09-16 07:11:18,926: Train batch 103000: loss: 0.02 grad norm: 0.92 time: 0.122 2025-09-16 07:11:51,742: Train batch 103200: loss: 0.00 grad norm: 0.10 time: 0.142 2025-09-16 07:12:24,030: Train batch 103400: loss: 0.01 grad norm: 0.66 time: 0.170 2025-09-16 07:12:56,537: Train batch 103600: loss: 0.00 grad norm: 0.27 time: 0.129 2025-09-16 07:13:28,940: Train batch 103800: loss: 0.00 grad norm: 0.27 time: 0.177 2025-09-16 07:14:01,369: Train batch 104000: loss: 0.01 grad norm: 0.25 time: 0.100 2025-09-16 07:14:01,369: Running test after training batch: 104000 2025-09-16 07:14:12,011: Val batch 104000: PER (avg): 0.1078 CTC Loss (avg): 27.3648 time: 10.642 2025-09-16 07:14:12,011: t15.2023.08.13 val PER: 0.0842 2025-09-16 07:14:12,012: t15.2023.08.18 val PER: 0.0771 2025-09-16 07:14:12,012: t15.2023.08.20 val PER: 0.0572 2025-09-16 07:14:12,012: t15.2023.08.25 val PER: 0.0919 2025-09-16 07:14:12,012: t15.2023.08.27 val PER: 0.1704 2025-09-16 07:14:12,012: t15.2023.09.01 val PER: 0.0503 2025-09-16 07:14:12,012: t15.2023.09.03 val PER: 0.1081 2025-09-16 07:14:12,012: t15.2023.09.24 val PER: 0.0922 2025-09-16 07:14:12,012: t15.2023.09.29 val PER: 0.0996 2025-09-16 07:14:12,012: t15.2023.10.01 val PER: 0.1473 2025-09-16 07:14:12,012: t15.2023.10.06 val PER: 0.0538 2025-09-16 07:14:12,012: t15.2023.10.08 val PER: 0.1894 2025-09-16 07:14:12,012: t15.2023.10.13 val PER: 0.1629 2025-09-16 07:14:12,012: t15.2023.10.15 val PER: 0.1074 2025-09-16 07:14:12,012: t15.2023.10.20 val PER: 0.1745 2025-09-16 07:14:12,012: t15.2023.10.22 val PER: 0.1069 2025-09-16 07:14:12,012: t15.2023.11.03 val PER: 0.1588 2025-09-16 07:14:12,012: t15.2023.11.04 val PER: 0.0068 2025-09-16 07:14:12,012: t15.2023.11.17 val PER: 0.0233 2025-09-16 07:14:12,013: t15.2023.11.19 val PER: 0.0080 2025-09-16 07:14:12,013: t15.2023.11.26 val PER: 0.0478 2025-09-16 07:14:12,013: t15.2023.12.03 val PER: 0.0609 2025-09-16 07:14:12,013: t15.2023.12.08 val PER: 0.0406 2025-09-16 07:14:12,013: t15.2023.12.10 val PER: 0.0407 2025-09-16 07:14:12,013: t15.2023.12.17 val PER: 0.0832 2025-09-16 07:14:12,013: t15.2023.12.29 val PER: 0.0824 2025-09-16 07:14:12,013: t15.2024.02.25 val PER: 0.0829 2025-09-16 07:14:12,013: t15.2024.03.08 val PER: 0.1679 2025-09-16 07:14:12,013: t15.2024.03.15 val PER: 0.1701 2025-09-16 07:14:12,013: t15.2024.03.17 val PER: 0.0711 2025-09-16 07:14:12,013: t15.2024.05.10 val PER: 0.1293 2025-09-16 07:14:12,013: t15.2024.06.14 val PER: 0.1262 2025-09-16 07:14:12,013: t15.2024.07.19 val PER: 0.1622 2025-09-16 07:14:12,013: t15.2024.07.21 val PER: 0.0545 2025-09-16 07:14:12,013: t15.2024.07.28 val PER: 0.0801 2025-09-16 07:14:12,013: t15.2025.01.10 val PER: 0.2521 2025-09-16 07:14:12,013: t15.2025.01.12 val PER: 0.0816 2025-09-16 07:14:12,013: t15.2025.03.14 val PER: 0.2707 2025-09-16 07:14:12,014: t15.2025.03.16 val PER: 0.1257 2025-09-16 07:14:12,014: t15.2025.03.30 val PER: 0.2241 2025-09-16 07:14:12,014: t15.2025.04.13 val PER: 0.2068 2025-09-16 07:14:39,365: Train batch 104200: loss: 0.00 grad norm: 0.16 time: 0.138 2025-09-16 07:15:11,189: Train batch 104400: loss: 0.00 grad norm: 0.20 time: 0.108 2025-09-16 07:15:43,785: Train batch 104600: loss: 0.00 grad norm: 0.15 time: 0.156 2025-09-16 07:16:16,690: Train batch 104800: loss: 0.00 grad norm: 0.21 time: 0.150 2025-09-16 07:16:49,344: Train batch 105000: loss: 0.00 grad norm: 0.05 time: 0.109 2025-09-16 07:17:21,649: Train batch 105200: loss: 0.01 grad norm: 0.51 time: 0.101 2025-09-16 07:17:53,971: Train batch 105400: loss: 0.00 grad norm: 0.03 time: 0.131 2025-09-16 07:18:26,592: Train batch 105600: loss: 0.00 grad norm: 0.12 time: 0.117 2025-09-16 07:18:59,035: Train batch 105800: loss: 0.00 grad norm: 0.11 time: 0.180 2025-09-16 07:19:30,743: Train batch 106000: loss: 0.01 grad norm: 0.21 time: 0.179 2025-09-16 07:19:30,744: Running test after training batch: 106000 2025-09-16 07:19:41,497: Val batch 106000: PER (avg): 0.1082 CTC Loss (avg): 27.3164 time: 10.753 2025-09-16 07:19:41,497: t15.2023.08.13 val PER: 0.0863 2025-09-16 07:19:41,497: t15.2023.08.18 val PER: 0.0796 2025-09-16 07:19:41,497: t15.2023.08.20 val PER: 0.0580 2025-09-16 07:19:41,497: t15.2023.08.25 val PER: 0.0919 2025-09-16 07:19:41,497: t15.2023.08.27 val PER: 0.1656 2025-09-16 07:19:41,497: t15.2023.09.01 val PER: 0.0519 2025-09-16 07:19:41,497: t15.2023.09.03 val PER: 0.1093 2025-09-16 07:19:41,497: t15.2023.09.24 val PER: 0.0934 2025-09-16 07:19:41,498: t15.2023.09.29 val PER: 0.0989 2025-09-16 07:19:41,498: t15.2023.10.01 val PER: 0.1486 2025-09-16 07:19:41,498: t15.2023.10.06 val PER: 0.0571 2025-09-16 07:19:41,498: t15.2023.10.08 val PER: 0.1881 2025-09-16 07:19:41,498: t15.2023.10.13 val PER: 0.1614 2025-09-16 07:19:41,498: t15.2023.10.15 val PER: 0.1114 2025-09-16 07:19:41,498: t15.2023.10.20 val PER: 0.1711 2025-09-16 07:19:41,498: t15.2023.10.22 val PER: 0.1069 2025-09-16 07:19:41,498: t15.2023.11.03 val PER: 0.1642 2025-09-16 07:19:41,498: t15.2023.11.04 val PER: 0.0068 2025-09-16 07:19:41,498: t15.2023.11.17 val PER: 0.0233 2025-09-16 07:19:41,498: t15.2023.11.19 val PER: 0.0100 2025-09-16 07:19:41,498: t15.2023.11.26 val PER: 0.0478 2025-09-16 07:19:41,498: t15.2023.12.03 val PER: 0.0567 2025-09-16 07:19:41,498: t15.2023.12.08 val PER: 0.0399 2025-09-16 07:19:41,498: t15.2023.12.10 val PER: 0.0381 2025-09-16 07:19:41,498: t15.2023.12.17 val PER: 0.0842 2025-09-16 07:19:41,498: t15.2023.12.29 val PER: 0.0803 2025-09-16 07:19:41,498: t15.2024.02.25 val PER: 0.0843 2025-09-16 07:19:41,499: t15.2024.03.08 val PER: 0.1721 2025-09-16 07:19:41,499: t15.2024.03.15 val PER: 0.1720 2025-09-16 07:19:41,499: t15.2024.03.17 val PER: 0.0711 2025-09-16 07:19:41,499: t15.2024.05.10 val PER: 0.1263 2025-09-16 07:19:41,499: t15.2024.06.14 val PER: 0.1246 2025-09-16 07:19:41,499: t15.2024.07.19 val PER: 0.1622 2025-09-16 07:19:41,499: t15.2024.07.21 val PER: 0.0559 2025-09-16 07:19:41,499: t15.2024.07.28 val PER: 0.0816 2025-09-16 07:19:41,499: t15.2025.01.10 val PER: 0.2534 2025-09-16 07:19:41,499: t15.2025.01.12 val PER: 0.0762 2025-09-16 07:19:41,499: t15.2025.03.14 val PER: 0.2692 2025-09-16 07:19:41,499: t15.2025.03.16 val PER: 0.1270 2025-09-16 07:19:41,499: t15.2025.03.30 val PER: 0.2264 2025-09-16 07:19:41,499: t15.2025.04.13 val PER: 0.2040 2025-09-16 07:20:09,249: Train batch 106200: loss: 0.00 grad norm: 0.35 time: 0.174 2025-09-16 07:20:40,667: Train batch 106400: loss: 0.00 grad norm: 0.13 time: 0.109 2025-09-16 07:21:12,636: Train batch 106600: loss: 0.01 grad norm: 1.17 time: 0.125 2025-09-16 07:21:45,121: Train batch 106800: loss: 0.00 grad norm: 0.14 time: 0.102 2025-09-16 07:22:17,075: Train batch 107000: loss: 0.00 grad norm: 0.18 time: 0.121 2025-09-16 07:22:48,936: Train batch 107200: loss: 0.01 grad norm: 0.42 time: 0.155 2025-09-16 07:23:21,153: Train batch 107400: loss: 0.00 grad norm: 0.46 time: 0.114 2025-09-16 07:23:53,299: Train batch 107600: loss: 0.00 grad norm: 0.40 time: 0.103 2025-09-16 07:24:25,883: Train batch 107800: loss: 0.00 grad norm: 0.20 time: 0.138 2025-09-16 07:24:57,978: Train batch 108000: loss: 0.00 grad norm: 0.10 time: 0.100 2025-09-16 07:24:57,978: Running test after training batch: 108000 2025-09-16 07:25:08,692: Val batch 108000: PER (avg): 0.1081 CTC Loss (avg): 27.3591 time: 10.714 2025-09-16 07:25:08,693: t15.2023.08.13 val PER: 0.0873 2025-09-16 07:25:08,693: t15.2023.08.18 val PER: 0.0771 2025-09-16 07:25:08,693: t15.2023.08.20 val PER: 0.0564 2025-09-16 07:25:08,693: t15.2023.08.25 val PER: 0.0934 2025-09-16 07:25:08,693: t15.2023.08.27 val PER: 0.1672 2025-09-16 07:25:08,693: t15.2023.09.01 val PER: 0.0511 2025-09-16 07:25:08,693: t15.2023.09.03 val PER: 0.1093 2025-09-16 07:25:08,693: t15.2023.09.24 val PER: 0.0922 2025-09-16 07:25:08,693: t15.2023.09.29 val PER: 0.1008 2025-09-16 07:25:08,693: t15.2023.10.01 val PER: 0.1480 2025-09-16 07:25:08,693: t15.2023.10.06 val PER: 0.0560 2025-09-16 07:25:08,693: t15.2023.10.08 val PER: 0.1881 2025-09-16 07:25:08,693: t15.2023.10.13 val PER: 0.1629 2025-09-16 07:25:08,693: t15.2023.10.15 val PER: 0.1121 2025-09-16 07:25:08,693: t15.2023.10.20 val PER: 0.1678 2025-09-16 07:25:08,693: t15.2023.10.22 val PER: 0.1058 2025-09-16 07:25:08,693: t15.2023.11.03 val PER: 0.1608 2025-09-16 07:25:08,693: t15.2023.11.04 val PER: 0.0068 2025-09-16 07:25:08,694: t15.2023.11.17 val PER: 0.0233 2025-09-16 07:25:08,694: t15.2023.11.19 val PER: 0.0120 2025-09-16 07:25:08,694: t15.2023.11.26 val PER: 0.0500 2025-09-16 07:25:08,694: t15.2023.12.03 val PER: 0.0588 2025-09-16 07:25:08,694: t15.2023.12.08 val PER: 0.0399 2025-09-16 07:25:08,694: t15.2023.12.10 val PER: 0.0381 2025-09-16 07:25:08,694: t15.2023.12.17 val PER: 0.0842 2025-09-16 07:25:08,694: t15.2023.12.29 val PER: 0.0803 2025-09-16 07:25:08,694: t15.2024.02.25 val PER: 0.0857 2025-09-16 07:25:08,694: t15.2024.03.08 val PER: 0.1693 2025-09-16 07:25:08,694: t15.2024.03.15 val PER: 0.1701 2025-09-16 07:25:08,694: t15.2024.03.17 val PER: 0.0697 2025-09-16 07:25:08,694: t15.2024.05.10 val PER: 0.1263 2025-09-16 07:25:08,694: t15.2024.06.14 val PER: 0.1309 2025-09-16 07:25:08,694: t15.2024.07.19 val PER: 0.1648 2025-09-16 07:25:08,694: t15.2024.07.21 val PER: 0.0552 2025-09-16 07:25:08,694: t15.2024.07.28 val PER: 0.0801 2025-09-16 07:25:08,694: t15.2025.01.10 val PER: 0.2521 2025-09-16 07:25:08,694: t15.2025.01.12 val PER: 0.0770 2025-09-16 07:25:08,694: t15.2025.03.14 val PER: 0.2751 2025-09-16 07:25:08,695: t15.2025.03.16 val PER: 0.1283 2025-09-16 07:25:08,695: t15.2025.03.30 val PER: 0.2218 2025-09-16 07:25:08,695: t15.2025.04.13 val PER: 0.1997 2025-09-16 07:25:36,206: Train batch 108200: loss: 0.00 grad norm: 0.04 time: 0.114 2025-09-16 07:26:08,192: Train batch 108400: loss: 0.00 grad norm: 0.06 time: 0.155 2025-09-16 07:26:40,247: Train batch 108600: loss: 0.01 grad norm: 0.47 time: 0.142 2025-09-16 07:27:12,251: Train batch 108800: loss: 0.00 grad norm: 0.05 time: 0.156 2025-09-16 07:27:44,210: Train batch 109000: loss: 0.00 grad norm: 0.11 time: 0.142 2025-09-16 07:28:16,384: Train batch 109200: loss: 0.00 grad norm: 0.05 time: 0.175 2025-09-16 07:28:49,291: Train batch 109400: loss: 0.01 grad norm: 0.46 time: 0.172 2025-09-16 07:29:21,286: Train batch 109600: loss: 0.01 grad norm: 1.60 time: 0.115 2025-09-16 07:29:52,994: Train batch 109800: loss: 0.02 grad norm: 2.60 time: 0.126 2025-09-16 07:30:25,411: Train batch 110000: loss: 0.00 grad norm: 0.40 time: 0.112 2025-09-16 07:30:25,412: Running test after training batch: 110000 2025-09-16 07:30:36,001: Val batch 110000: PER (avg): 0.1079 CTC Loss (avg): 27.2525 time: 10.589 2025-09-16 07:30:36,001: t15.2023.08.13 val PER: 0.0873 2025-09-16 07:30:36,001: t15.2023.08.18 val PER: 0.0780 2025-09-16 07:30:36,002: t15.2023.08.20 val PER: 0.0564 2025-09-16 07:30:36,002: t15.2023.08.25 val PER: 0.0919 2025-09-16 07:30:36,002: t15.2023.08.27 val PER: 0.1672 2025-09-16 07:30:36,002: t15.2023.09.01 val PER: 0.0528 2025-09-16 07:30:36,002: t15.2023.09.03 val PER: 0.1105 2025-09-16 07:30:36,002: t15.2023.09.24 val PER: 0.0947 2025-09-16 07:30:36,002: t15.2023.09.29 val PER: 0.0989 2025-09-16 07:30:36,002: t15.2023.10.01 val PER: 0.1466 2025-09-16 07:30:36,002: t15.2023.10.06 val PER: 0.0549 2025-09-16 07:30:36,002: t15.2023.10.08 val PER: 0.1854 2025-09-16 07:30:36,002: t15.2023.10.13 val PER: 0.1598 2025-09-16 07:30:36,002: t15.2023.10.15 val PER: 0.1074 2025-09-16 07:30:36,002: t15.2023.10.20 val PER: 0.1745 2025-09-16 07:30:36,002: t15.2023.10.22 val PER: 0.1069 2025-09-16 07:30:36,002: t15.2023.11.03 val PER: 0.1608 2025-09-16 07:30:36,002: t15.2023.11.04 val PER: 0.0068 2025-09-16 07:30:36,002: t15.2023.11.17 val PER: 0.0233 2025-09-16 07:30:36,002: t15.2023.11.19 val PER: 0.0120 2025-09-16 07:30:36,002: t15.2023.11.26 val PER: 0.0464 2025-09-16 07:30:36,003: t15.2023.12.03 val PER: 0.0567 2025-09-16 07:30:36,003: t15.2023.12.08 val PER: 0.0406 2025-09-16 07:30:36,003: t15.2023.12.10 val PER: 0.0394 2025-09-16 07:30:36,003: t15.2023.12.17 val PER: 0.0894 2025-09-16 07:30:36,003: t15.2023.12.29 val PER: 0.0817 2025-09-16 07:30:36,003: t15.2024.02.25 val PER: 0.0885 2025-09-16 07:30:36,003: t15.2024.03.08 val PER: 0.1693 2025-09-16 07:30:36,003: t15.2024.03.15 val PER: 0.1720 2025-09-16 07:30:36,003: t15.2024.03.17 val PER: 0.0704 2025-09-16 07:30:36,003: t15.2024.05.10 val PER: 0.1233 2025-09-16 07:30:36,003: t15.2024.06.14 val PER: 0.1309 2025-09-16 07:30:36,003: t15.2024.07.19 val PER: 0.1628 2025-09-16 07:30:36,003: t15.2024.07.21 val PER: 0.0545 2025-09-16 07:30:36,003: t15.2024.07.28 val PER: 0.0779 2025-09-16 07:30:36,003: t15.2025.01.10 val PER: 0.2521 2025-09-16 07:30:36,003: t15.2025.01.12 val PER: 0.0754 2025-09-16 07:30:36,003: t15.2025.03.14 val PER: 0.2707 2025-09-16 07:30:36,003: t15.2025.03.16 val PER: 0.1348 2025-09-16 07:30:36,003: t15.2025.03.30 val PER: 0.2276 2025-09-16 07:30:36,003: t15.2025.04.13 val PER: 0.1983 2025-09-16 07:31:03,484: Train batch 110200: loss: 0.01 grad norm: 0.61 time: 0.134 2025-09-16 07:31:35,080: Train batch 110400: loss: 0.00 grad norm: 0.04 time: 0.129 2025-09-16 07:32:07,015: Train batch 110600: loss: 0.01 grad norm: 1.37 time: 0.135 2025-09-16 07:32:38,683: Train batch 110800: loss: 0.01 grad norm: 0.80 time: 0.150 2025-09-16 07:33:11,027: Train batch 111000: loss: 0.00 grad norm: 0.05 time: 0.132 2025-09-16 07:33:43,198: Train batch 111200: loss: 0.00 grad norm: 0.14 time: 0.113 2025-09-16 07:34:15,419: Train batch 111400: loss: 0.00 grad norm: 0.21 time: 0.143 2025-09-16 07:34:47,332: Train batch 111600: loss: 0.02 grad norm: 2.02 time: 0.115 2025-09-16 07:35:19,143: Train batch 111800: loss: 0.00 grad norm: 0.87 time: 0.135 2025-09-16 07:35:51,385: Train batch 112000: loss: 0.00 grad norm: 0.21 time: 0.123 2025-09-16 07:35:51,385: Running test after training batch: 112000 2025-09-16 07:36:01,915: Val batch 112000: PER (avg): 0.1078 CTC Loss (avg): 27.2122 time: 10.529 2025-09-16 07:36:01,915: t15.2023.08.13 val PER: 0.0884 2025-09-16 07:36:01,915: t15.2023.08.18 val PER: 0.0780 2025-09-16 07:36:01,915: t15.2023.08.20 val PER: 0.0580 2025-09-16 07:36:01,915: t15.2023.08.25 val PER: 0.0919 2025-09-16 07:36:01,915: t15.2023.08.27 val PER: 0.1672 2025-09-16 07:36:01,915: t15.2023.09.01 val PER: 0.0511 2025-09-16 07:36:01,915: t15.2023.09.03 val PER: 0.1116 2025-09-16 07:36:01,915: t15.2023.09.24 val PER: 0.0947 2025-09-16 07:36:01,915: t15.2023.09.29 val PER: 0.0989 2025-09-16 07:36:01,915: t15.2023.10.01 val PER: 0.1453 2025-09-16 07:36:01,915: t15.2023.10.06 val PER: 0.0549 2025-09-16 07:36:01,915: t15.2023.10.08 val PER: 0.1894 2025-09-16 07:36:01,915: t15.2023.10.13 val PER: 0.1590 2025-09-16 07:36:01,915: t15.2023.10.15 val PER: 0.1094 2025-09-16 07:36:01,916: t15.2023.10.20 val PER: 0.1745 2025-09-16 07:36:01,916: t15.2023.10.22 val PER: 0.1069 2025-09-16 07:36:01,916: t15.2023.11.03 val PER: 0.1608 2025-09-16 07:36:01,916: t15.2023.11.04 val PER: 0.0068 2025-09-16 07:36:01,916: t15.2023.11.17 val PER: 0.0233 2025-09-16 07:36:01,916: t15.2023.11.19 val PER: 0.0120 2025-09-16 07:36:01,916: t15.2023.11.26 val PER: 0.0500 2025-09-16 07:36:01,916: t15.2023.12.03 val PER: 0.0567 2025-09-16 07:36:01,916: t15.2023.12.08 val PER: 0.0406 2025-09-16 07:36:01,916: t15.2023.12.10 val PER: 0.0394 2025-09-16 07:36:01,916: t15.2023.12.17 val PER: 0.0884 2025-09-16 07:36:01,916: t15.2023.12.29 val PER: 0.0796 2025-09-16 07:36:01,916: t15.2024.02.25 val PER: 0.0885 2025-09-16 07:36:01,916: t15.2024.03.08 val PER: 0.1693 2025-09-16 07:36:01,916: t15.2024.03.15 val PER: 0.1682 2025-09-16 07:36:01,916: t15.2024.03.17 val PER: 0.0704 2025-09-16 07:36:01,916: t15.2024.05.10 val PER: 0.1233 2025-09-16 07:36:01,916: t15.2024.06.14 val PER: 0.1278 2025-09-16 07:36:01,916: t15.2024.07.19 val PER: 0.1628 2025-09-16 07:36:01,917: t15.2024.07.21 val PER: 0.0559 2025-09-16 07:36:01,917: t15.2024.07.28 val PER: 0.0801 2025-09-16 07:36:01,917: t15.2025.01.10 val PER: 0.2534 2025-09-16 07:36:01,917: t15.2025.01.12 val PER: 0.0747 2025-09-16 07:36:01,917: t15.2025.03.14 val PER: 0.2692 2025-09-16 07:36:01,917: t15.2025.03.16 val PER: 0.1296 2025-09-16 07:36:01,917: t15.2025.03.30 val PER: 0.2264 2025-09-16 07:36:01,917: t15.2025.04.13 val PER: 0.2011 2025-09-16 07:36:30,180: Train batch 112200: loss: 0.01 grad norm: 0.73 time: 0.146 2025-09-16 07:37:02,278: Train batch 112400: loss: 0.01 grad norm: 3.01 time: 0.118 2025-09-16 07:37:35,560: Train batch 112600: loss: 0.01 grad norm: 1.81 time: 0.182 2025-09-16 07:38:07,871: Train batch 112800: loss: 0.01 grad norm: 0.41 time: 0.152 2025-09-16 07:38:39,777: Train batch 113000: loss: 0.01 grad norm: 0.40 time: 0.119 2025-09-16 07:39:11,895: Train batch 113200: loss: 0.00 grad norm: 0.25 time: 0.167 2025-09-16 07:39:44,784: Train batch 113400: loss: 0.00 grad norm: 0.18 time: 0.121 2025-09-16 07:40:17,787: Train batch 113600: loss: 0.00 grad norm: 0.10 time: 0.102 2025-09-16 07:40:50,043: Train batch 113800: loss: 0.01 grad norm: 0.85 time: 0.145 2025-09-16 07:41:23,335: Train batch 114000: loss: 0.00 grad norm: 0.04 time: 0.157 2025-09-16 07:41:23,335: Running test after training batch: 114000 2025-09-16 07:41:33,918: Val batch 114000: PER (avg): 0.1080 CTC Loss (avg): 27.3161 time: 10.583 2025-09-16 07:41:33,919: t15.2023.08.13 val PER: 0.0873 2025-09-16 07:41:33,919: t15.2023.08.18 val PER: 0.0763 2025-09-16 07:41:33,919: t15.2023.08.20 val PER: 0.0588 2025-09-16 07:41:33,919: t15.2023.08.25 val PER: 0.0919 2025-09-16 07:41:33,919: t15.2023.08.27 val PER: 0.1672 2025-09-16 07:41:33,919: t15.2023.09.01 val PER: 0.0519 2025-09-16 07:41:33,919: t15.2023.09.03 val PER: 0.1140 2025-09-16 07:41:33,919: t15.2023.09.24 val PER: 0.0947 2025-09-16 07:41:33,919: t15.2023.09.29 val PER: 0.0983 2025-09-16 07:41:33,919: t15.2023.10.01 val PER: 0.1466 2025-09-16 07:41:33,919: t15.2023.10.06 val PER: 0.0538 2025-09-16 07:41:33,919: t15.2023.10.08 val PER: 0.1894 2025-09-16 07:41:33,919: t15.2023.10.13 val PER: 0.1598 2025-09-16 07:41:33,919: t15.2023.10.15 val PER: 0.1088 2025-09-16 07:41:33,919: t15.2023.10.20 val PER: 0.1779 2025-09-16 07:41:33,920: t15.2023.10.22 val PER: 0.1069 2025-09-16 07:41:33,920: t15.2023.11.03 val PER: 0.1628 2025-09-16 07:41:33,920: t15.2023.11.04 val PER: 0.0068 2025-09-16 07:41:33,920: t15.2023.11.17 val PER: 0.0233 2025-09-16 07:41:33,920: t15.2023.11.19 val PER: 0.0100 2025-09-16 07:41:33,920: t15.2023.11.26 val PER: 0.0493 2025-09-16 07:41:33,920: t15.2023.12.03 val PER: 0.0578 2025-09-16 07:41:33,920: t15.2023.12.08 val PER: 0.0399 2025-09-16 07:41:33,920: t15.2023.12.10 val PER: 0.0407 2025-09-16 07:41:33,920: t15.2023.12.17 val PER: 0.0873 2025-09-16 07:41:33,920: t15.2023.12.29 val PER: 0.0796 2025-09-16 07:41:33,920: t15.2024.02.25 val PER: 0.0871 2025-09-16 07:41:33,920: t15.2024.03.08 val PER: 0.1693 2025-09-16 07:41:33,920: t15.2024.03.15 val PER: 0.1701 2025-09-16 07:41:33,920: t15.2024.03.17 val PER: 0.0718 2025-09-16 07:41:33,920: t15.2024.05.10 val PER: 0.1233 2025-09-16 07:41:33,920: t15.2024.06.14 val PER: 0.1293 2025-09-16 07:41:33,920: t15.2024.07.19 val PER: 0.1622 2025-09-16 07:41:33,920: t15.2024.07.21 val PER: 0.0559 2025-09-16 07:41:33,920: t15.2024.07.28 val PER: 0.0809 2025-09-16 07:41:33,921: t15.2025.01.10 val PER: 0.2521 2025-09-16 07:41:33,921: t15.2025.01.12 val PER: 0.0762 2025-09-16 07:41:33,921: t15.2025.03.14 val PER: 0.2678 2025-09-16 07:41:33,921: t15.2025.03.16 val PER: 0.1322 2025-09-16 07:41:33,921: t15.2025.03.30 val PER: 0.2253 2025-09-16 07:41:33,921: t15.2025.04.13 val PER: 0.1983 2025-09-16 07:42:01,244: Train batch 114200: loss: 0.00 grad norm: 0.13 time: 0.153 2025-09-16 07:42:33,262: Train batch 114400: loss: 0.00 grad norm: 0.12 time: 0.161 2025-09-16 07:43:06,098: Train batch 114600: loss: 0.00 grad norm: 0.33 time: 0.127 2025-09-16 07:43:38,727: Train batch 114800: loss: 0.01 grad norm: 0.83 time: 0.114