tpu
This commit is contained in:
@@ -1,5 +1,6 @@
|
|||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
from typing import cast
|
||||||
|
|
||||||
class GradientReversalFn(torch.autograd.Function):
|
class GradientReversalFn(torch.autograd.Function):
|
||||||
"""
|
"""
|
||||||
@@ -458,9 +459,13 @@ class TripleGRUDecoder(nn.Module):
|
|||||||
# 2. For residual connection, we need x in the same space as noise_output
|
# 2. For residual connection, we need x in the same space as noise_output
|
||||||
# Apply the same preprocessing that the models use internally
|
# Apply the same preprocessing that the models use internally
|
||||||
x_processed = self._apply_preprocessing(x, day_idx)
|
x_processed = self._apply_preprocessing(x, day_idx)
|
||||||
|
clean_dtype = next(self.clean_speech_model.parameters()).dtype
|
||||||
|
if x_processed.dtype != clean_dtype:
|
||||||
|
x_processed = x_processed.to(clean_dtype)
|
||||||
|
|
||||||
# Ensure dtype consistency between processed input and noise output
|
# Ensure dtype consistency between processed input and noise output
|
||||||
noise_output = noise_output.to(x_processed.dtype)
|
if noise_output.dtype != clean_dtype:
|
||||||
|
noise_output = noise_output.to(clean_dtype)
|
||||||
|
|
||||||
# 3. Clean speech model processes denoised signal
|
# 3. Clean speech model processes denoised signal
|
||||||
denoised_input = x_processed - noise_output # Residual connection in processed space
|
denoised_input = x_processed - noise_output # Residual connection in processed space
|
||||||
@@ -473,9 +478,10 @@ class TripleGRUDecoder(nn.Module):
|
|||||||
# 4. Noisy speech model processes noise signal directly (no day layers needed)
|
# 4. Noisy speech model processes noise signal directly (no day layers needed)
|
||||||
# Optionally apply Gradient Reversal to enforce adversarial training on noise output
|
# Optionally apply Gradient Reversal to enforce adversarial training on noise output
|
||||||
noisy_input = gradient_reverse(noise_output, grl_lambda) if grl_lambda and grl_lambda != 0.0 else noise_output
|
noisy_input = gradient_reverse(noise_output, grl_lambda) if grl_lambda and grl_lambda != 0.0 else noise_output
|
||||||
# Ensure dtype consistency - GradientReversalFn should preserve dtype, but ensure compatibility
|
noisy_input = cast(torch.Tensor, noisy_input)
|
||||||
# Use x_processed.dtype as reference since it's the main data flow dtype
|
noisy_dtype = next(self.noisy_speech_model.parameters()).dtype
|
||||||
noisy_input = noisy_input.to(x_processed.dtype)
|
if noisy_input.dtype != noisy_dtype:
|
||||||
|
noisy_input = noisy_input.to(noisy_dtype)
|
||||||
noisy_logits = self._noisy_forward_with_processed_input(noisy_input,
|
noisy_logits = self._noisy_forward_with_processed_input(noisy_input,
|
||||||
states['noisy'] if states else None)
|
states['noisy'] if states else None)
|
||||||
|
|
||||||
@@ -493,9 +499,13 @@ class TripleGRUDecoder(nn.Module):
|
|||||||
|
|
||||||
# 2. For residual connection, we need x in the same space as noise_output
|
# 2. For residual connection, we need x in the same space as noise_output
|
||||||
x_processed = self._apply_preprocessing(x, day_idx)
|
x_processed = self._apply_preprocessing(x, day_idx)
|
||||||
|
clean_dtype = next(self.clean_speech_model.parameters()).dtype
|
||||||
|
if x_processed.dtype != clean_dtype:
|
||||||
|
x_processed = x_processed.to(clean_dtype)
|
||||||
|
|
||||||
# Ensure dtype consistency for mixed precision residual connection
|
# Ensure dtype consistency for mixed precision residual connection
|
||||||
noise_output = noise_output.to(x_processed.dtype)
|
if noise_output.dtype != clean_dtype:
|
||||||
|
noise_output = noise_output.to(clean_dtype)
|
||||||
denoised_input = x_processed - noise_output
|
denoised_input = x_processed - noise_output
|
||||||
clean_logits = self._clean_forward_with_processed_input(denoised_input, day_idx,
|
clean_logits = self._clean_forward_with_processed_input(denoised_input, day_idx,
|
||||||
states['clean'] if states else None)
|
states['clean'] if states else None)
|
||||||
@@ -514,10 +524,6 @@ class TripleGRUDecoder(nn.Module):
|
|||||||
|
|
||||||
clean_grad (tensor) - gradients from clean speech model output layer
|
clean_grad (tensor) - gradients from clean speech model output layer
|
||||||
noisy_grad (tensor) - gradients from noisy speech model output layer
|
noisy_grad (tensor) - gradients from noisy speech model output layer
|
||||||
if grl_lambda and grl_lambda != 0.0:
|
|
||||||
noisy_input = gradient_reverse(noise_output, grl_lambda)
|
|
||||||
else:
|
|
||||||
noisy_input = noise_output
|
|
||||||
'''
|
'''
|
||||||
# Combine gradients: negative from clean model, positive from noisy model
|
# Combine gradients: negative from clean model, positive from noisy model
|
||||||
combined_grad = -clean_grad + noisy_grad
|
combined_grad = -clean_grad + noisy_grad
|
||||||
|
Reference in New Issue
Block a user