tpu maual dataloader
This commit is contained in:
@@ -49,7 +49,7 @@ class BrainToTextDecoder_Trainer:
|
||||
)
|
||||
|
||||
# Set even_batches to False after initialization - required for batch_size=None DataLoaders
|
||||
self.accelerator.even_batches = False
|
||||
# Note: This may not be settable in all Accelerate versions, but we handle it in DataLoader config
|
||||
|
||||
# Trainer fields
|
||||
self.args = args
|
||||
@@ -280,19 +280,36 @@ class BrainToTextDecoder_Trainer:
|
||||
param.requires_grad = False
|
||||
|
||||
# Prepare model, optimizer, scheduler, and dataloaders for distributed training
|
||||
(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
self.train_loader,
|
||||
self.val_loader,
|
||||
) = self.accelerator.prepare(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
self.train_loader,
|
||||
self.val_loader,
|
||||
)
|
||||
# For TPU, don't prepare DataLoaders with Accelerator to avoid batch_sampler issues
|
||||
use_tpu = self.args.get('use_tpu', False)
|
||||
|
||||
if use_tpu:
|
||||
# On TPU, only prepare model, optimizer, and scheduler
|
||||
(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
) = self.accelerator.prepare(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
)
|
||||
# DataLoaders remain unprepared but will work with our custom configuration
|
||||
else:
|
||||
# Standard GPU/CPU preparation including DataLoaders
|
||||
(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
self.train_loader,
|
||||
self.val_loader,
|
||||
) = self.accelerator.prepare(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.learning_rate_scheduler,
|
||||
self.train_loader,
|
||||
self.val_loader,
|
||||
)
|
||||
|
||||
self.logger.info("Prepared model and dataloaders with Accelerator")
|
||||
|
||||
@@ -563,12 +580,22 @@ class BrainToTextDecoder_Trainer:
|
||||
# Train step
|
||||
start_time = time.time()
|
||||
|
||||
# Data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
labels = batch['seq_class_ids']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
phone_seq_lens = batch['phone_seq_lens']
|
||||
day_indicies = batch['day_indicies']
|
||||
# Handle data movement - for TPU, manually move to device since DataLoader wasn't prepared by Accelerator
|
||||
use_tpu = self.args.get('use_tpu', False)
|
||||
if use_tpu:
|
||||
# Manual data movement for TPU since DataLoaders are not prepared by Accelerator
|
||||
features = batch['input_features'].to(self.device)
|
||||
labels = batch['seq_class_ids'].to(self.device)
|
||||
n_time_steps = batch['n_time_steps'].to(self.device)
|
||||
phone_seq_lens = batch['phone_seq_lens'].to(self.device)
|
||||
day_indicies = batch['day_indicies'].to(self.device)
|
||||
else:
|
||||
# For GPU/CPU, data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
labels = batch['seq_class_ids']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
phone_seq_lens = batch['phone_seq_lens']
|
||||
day_indicies = batch['day_indicies']
|
||||
|
||||
# Use Accelerator's autocast (mixed precision handled by Accelerator init)
|
||||
with self.accelerator.autocast():
|
||||
@@ -732,12 +759,22 @@ class BrainToTextDecoder_Trainer:
|
||||
|
||||
for i, batch in enumerate(loader):
|
||||
|
||||
# Data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
labels = batch['seq_class_ids']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
phone_seq_lens = batch['phone_seq_lens']
|
||||
day_indicies = batch['day_indicies']
|
||||
# Handle data movement - for TPU, manually move to device since DataLoader wasn't prepared by Accelerator
|
||||
use_tpu = self.args.get('use_tpu', False)
|
||||
if use_tpu:
|
||||
# Manual data movement for TPU since DataLoaders are not prepared by Accelerator
|
||||
features = batch['input_features'].to(self.device)
|
||||
labels = batch['seq_class_ids'].to(self.device)
|
||||
n_time_steps = batch['n_time_steps'].to(self.device)
|
||||
phone_seq_lens = batch['phone_seq_lens'].to(self.device)
|
||||
day_indicies = batch['day_indicies'].to(self.device)
|
||||
else:
|
||||
# For GPU/CPU, data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
labels = batch['seq_class_ids']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
phone_seq_lens = batch['phone_seq_lens']
|
||||
day_indicies = batch['day_indicies']
|
||||
|
||||
# Determine if we should perform validation on this batch
|
||||
day = day_indicies[0].item()
|
||||
@@ -838,10 +875,18 @@ class BrainToTextDecoder_Trainer:
|
||||
'''
|
||||
self.model.eval()
|
||||
|
||||
# Data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
day_indicies = batch['day_indicies']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
# Handle data movement - for TPU, manually move to device since DataLoader wasn't prepared by Accelerator
|
||||
use_tpu = self.args.get('use_tpu', False)
|
||||
if use_tpu:
|
||||
# Manual data movement for TPU since DataLoaders are not prepared by Accelerator
|
||||
features = batch['input_features'].to(self.device)
|
||||
day_indicies = batch['day_indicies'].to(self.device)
|
||||
n_time_steps = batch['n_time_steps'].to(self.device)
|
||||
else:
|
||||
# For GPU/CPU, data is automatically moved to device by Accelerator
|
||||
features = batch['input_features']
|
||||
day_indicies = batch['day_indicies']
|
||||
n_time_steps = batch['n_time_steps']
|
||||
|
||||
with torch.no_grad():
|
||||
with self.accelerator.autocast():
|
||||
|
Reference in New Issue
Block a user