competition update
This commit is contained in:
@@ -1,81 +1,89 @@
|
||||
model:
|
||||
n_input_features: 512
|
||||
n_units: 768
|
||||
rnn_dropout: 0.4
|
||||
rnn_trainable: true
|
||||
n_layers: 5
|
||||
bidirectional: false
|
||||
patch_size: 14
|
||||
patch_stride: 4
|
||||
n_input_features: 512 # number of input features in the neural data. (2 features per electrode, 256 electrodes)
|
||||
n_units: 768 # number of units per GRU layer
|
||||
rnn_dropout: 0.4 # dropout rate for the GRU layers
|
||||
rnn_trainable: true # whether the GRU layers are trainable
|
||||
n_layers: 5 # number of GRU layers
|
||||
patch_size: 14 # size of the input patches (14 time steps)
|
||||
patch_stride: 4 # stride for the input patches (4 time steps)
|
||||
|
||||
input_network:
|
||||
n_input_layers: 1
|
||||
n_input_layers: 1 # number of input layers per network (one network for each day)
|
||||
input_layer_sizes:
|
||||
- 512
|
||||
input_trainable: true
|
||||
input_layer_dropout: 0.2
|
||||
gpu_number: '1'
|
||||
distributed_training: false
|
||||
- 512 # size of the input layer (number of input features)
|
||||
input_trainable: true # whether the input layer is trainable
|
||||
input_layer_dropout: 0.2 # dropout rate for the input layer
|
||||
|
||||
gpu_number: '1' # GPU number to use for training, formatted as a string (e.g., '0', '1', etc.)
|
||||
mode: train
|
||||
use_amp: true
|
||||
output_dir: /media/lm-pc/8tb_nvme/b2txt25/rnn_v2_jitter
|
||||
init_from_checkpoint: false
|
||||
checkpoint_dir: /media/lm-pc/8tb_nvme/b2txt25/rnn_v2_jitter/checkpoint
|
||||
init_checkpoint_path: None
|
||||
save_best_checkpoint: true
|
||||
save_all_val_steps: false
|
||||
save_final_model: false
|
||||
save_val_metrics: true
|
||||
early_stopping: false
|
||||
early_stopping_val_steps: 20
|
||||
num_training_batches: 120000
|
||||
lr_scheduler_type: cosine
|
||||
lr_max: 0.005
|
||||
lr_min: 0.0001
|
||||
lr_decay_steps: 120000
|
||||
lr_warmup_steps: 1000
|
||||
lr_max_day: 0.005
|
||||
lr_min_day: 0.0001
|
||||
lr_decay_steps_day: 120000
|
||||
lr_warmup_steps_day: 1000
|
||||
beta0: 0.9
|
||||
beta1: 0.999
|
||||
epsilon: 0.1
|
||||
weight_decay: 0.001
|
||||
weight_decay_day: 0
|
||||
seed: 10
|
||||
grad_norm_clip_value: 10
|
||||
batches_per_train_log: 200
|
||||
batches_per_val_step: 2000
|
||||
batches_per_save: 0
|
||||
log_individual_day_val_PER: true
|
||||
log_val_skip_logs: false
|
||||
save_val_logits: true
|
||||
save_val_data: false
|
||||
use_amp: true # whether to use automatic mixed precision (AMP) for training
|
||||
|
||||
output_dir: trained_models/baseline_rnn # directory to save the trained model and logs
|
||||
checkpoint_dir: trained_models/baseline_rnn/checkpoint # directory to save checkpoints during training
|
||||
init_from_checkpoint: false # whether to initialize the model from a checkpoint
|
||||
init_checkpoint_path: None # path to the checkpoint to initialize the model from, if any
|
||||
save_best_checkpoint: true # whether to save the best checkpoint based on validation metrics
|
||||
save_all_val_steps: false # whether to save checkpoints at all validation steps
|
||||
save_final_model: false # whether to save the final model after training
|
||||
save_val_metrics: true # whether to save validation metrics during training
|
||||
early_stopping: false # whether to use early stopping based on validation metrics
|
||||
early_stopping_val_steps: 20 # number of validation steps to wait before stopping training if no improvement is seen
|
||||
|
||||
num_training_batches: 120000 # number of training batches to run
|
||||
lr_scheduler_type: cosine # type of learning rate scheduler to use
|
||||
lr_max: 0.005 # maximum learning rate for the main model
|
||||
lr_min: 0.0001 # minimum learning rate for the main model
|
||||
lr_decay_steps: 120000 # number of steps for the learning rate decay
|
||||
lr_warmup_steps: 1000 # number of warmup steps for the learning rate scheduler
|
||||
lr_max_day: 0.005 # maximum learning rate for the day specific input layers
|
||||
lr_min_day: 0.0001 # minimum learning rate for the day specific input layers
|
||||
lr_decay_steps_day: 120000 # number of steps for the learning rate decay for the day specific input layers
|
||||
lr_warmup_steps_day: 1000 # number of warmup steps for the learning rate scheduler for the day specific input layers
|
||||
|
||||
beta0: 0.9 # beta0 parameter for the Adam optimizer
|
||||
beta1: 0.999 # beta1 parameter for the Adam optimizer
|
||||
epsilon: 0.1 # epsilon parameter for the Adam optimizer
|
||||
weight_decay: 0.001 # weight decay for the main model
|
||||
weight_decay_day: 0 # weight decay for the day specific input layers
|
||||
seed: 10 # random seed for reproducibility
|
||||
grad_norm_clip_value: 10 # gradient norm clipping value
|
||||
|
||||
batches_per_train_log: 200 # number of batches per training log
|
||||
batches_per_val_step: 2000 # number of batches per validation step
|
||||
|
||||
batches_per_save: 0 # number of batches per save
|
||||
log_individual_day_val_PER: true # whether to log individual day validation performance
|
||||
log_val_skip_logs: false # whether to skip logging validation metrics
|
||||
save_val_logits: true # whether to save validation logits
|
||||
save_val_data: false # whether to save validation data
|
||||
|
||||
dataset:
|
||||
data_transforms:
|
||||
white_noise_std: 1.0
|
||||
constant_offset_std: 0.2
|
||||
random_walk_std: 0.0
|
||||
random_walk_axis: -1
|
||||
static_gain_std: 0.0
|
||||
random_cut: 3 #0
|
||||
smooth_kernel_size: 100
|
||||
smooth_data: true
|
||||
smooth_kernel_std: 2
|
||||
neural_dim: 512
|
||||
batch_size: 64
|
||||
n_classes: 41
|
||||
max_seq_elements: 500
|
||||
days_per_batch: 4
|
||||
seed: 1
|
||||
num_dataloader_workers: 4
|
||||
loader_shuffle: false
|
||||
must_include_days: null
|
||||
test_percentage: 0.1
|
||||
feature_subset: null
|
||||
dataset_dir: /media/lm-pc/8tb_nvme/b2txt25/hdf5_data
|
||||
bad_trials_dict: null
|
||||
sessions:
|
||||
white_noise_std: 1.0 # standard deviation of the white noise added to the data
|
||||
constant_offset_std: 0.2 # standard deviation of the constant offset added to the data
|
||||
random_walk_std: 0.0 # standard deviation of the random walk added to the data
|
||||
random_walk_axis: -1 # axis along which the random walk is applied
|
||||
static_gain_std: 0.0 # standard deviation of the static gain applied to the data
|
||||
random_cut: 3 # number of time steps to randomly cut from the beginning of each batch of trials
|
||||
smooth_kernel_size: 100 # size of the smoothing kernel applied to the data
|
||||
smooth_data: true # whether to smooth the data
|
||||
smooth_kernel_std: 2 # standard deviation of the smoothing kernel applied to the data
|
||||
|
||||
neural_dim: 512 # dimensionality of the neural data
|
||||
batch_size: 64 # batch size for training
|
||||
n_classes: 41 # number of classes (phonemes) in the dataset
|
||||
max_seq_elements: 500 # maximum number of sequence elements (phonemes) for any trial
|
||||
days_per_batch: 4 # number of randomly-selected days to include in each batch
|
||||
seed: 1 # random seed for reproducibility
|
||||
num_dataloader_workers: 4 # number of workers for the data loader
|
||||
loader_shuffle: false # whether to shuffle the data loader
|
||||
must_include_days: null # specific days to include in the dataset
|
||||
test_percentage: 0.1 # percentage of data to use for testing
|
||||
feature_subset: null # specific features to include in the dataset
|
||||
|
||||
dataset_dir: ../data/t15_copyTask_neuralData # directory containing the dataset
|
||||
bad_trials_dict: null # dictionary of bad trials to exclude from the dataset
|
||||
sessions: # list of sessions to include in the dataset
|
||||
- t15.2023.08.11
|
||||
- t15.2023.08.13
|
||||
- t15.2023.08.18
|
||||
@@ -121,7 +129,7 @@ dataset:
|
||||
- t15.2025.03.16
|
||||
- t15.2025.03.30
|
||||
- t15.2025.04.13
|
||||
dataset_probability_val:
|
||||
dataset_probability_val: # probability of including a trial in the validation set (0 or 1)
|
||||
- 0
|
||||
- 1
|
||||
- 1
|
||||
|
Reference in New Issue
Block a user