competition update
This commit is contained in:
228
language_model/wenet/transformer/subsampling.py
Normal file
228
language_model/wenet/transformer/subsampling.py
Normal file
@@ -0,0 +1,228 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
|
||||
# Author: di.wu@mobvoi.com (DI WU)
|
||||
"""Subsampling layer definition."""
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class BaseSubsampling(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.right_context = 0
|
||||
self.subsampling_rate = 1
|
||||
|
||||
def position_encoding(self, offset: int, size: int) -> torch.Tensor:
|
||||
return self.pos_enc.position_encoding(offset, size)
|
||||
|
||||
|
||||
class LinearNoSubsampling(BaseSubsampling):
|
||||
"""Linear transform the input without subsampling
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an linear object."""
|
||||
super().__init__()
|
||||
self.out = torch.nn.Sequential(
|
||||
torch.nn.Linear(idim, odim),
|
||||
torch.nn.LayerNorm(odim, eps=1e-12),
|
||||
torch.nn.Dropout(dropout_rate),
|
||||
)
|
||||
self.pos_enc = pos_enc_class
|
||||
self.right_context = 0
|
||||
self.subsampling_rate = 1
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: int = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Input x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: linear input tensor (#batch, time', odim),
|
||||
where time' = time .
|
||||
torch.Tensor: linear input mask (#batch, 1, time'),
|
||||
where time' = time .
|
||||
|
||||
"""
|
||||
x = self.out(x)
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask
|
||||
|
||||
|
||||
class Conv2dSubsampling4(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/4 length).
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling4 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.out = torch.nn.Sequential(
|
||||
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
|
||||
self.pos_enc = pos_enc_class
|
||||
# The right context for every conv layer is computed by:
|
||||
# (kernel_size - 1) * frame_rate_of_this_layer
|
||||
self.subsampling_rate = 4
|
||||
# 6 = (3 - 1) * 1 + (3 - 1) * 2
|
||||
self.right_context = 6
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: int = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 4.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 4.
|
||||
torch.Tensor: positional encoding
|
||||
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c=1, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, :-2:2][:, :, :-2:2]
|
||||
|
||||
|
||||
class Conv2dSubsampling6(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/6 length).
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
pos_enc (torch.nn.Module): Custom position encoding layer.
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling6 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 5, 3),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
|
||||
odim)
|
||||
self.pos_enc = pos_enc_class
|
||||
# 10 = (3 - 1) * 1 + (5 - 1) * 2
|
||||
self.subsampling_rate = 6
|
||||
self.right_context = 10
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: int = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 6.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 6.
|
||||
torch.Tensor: positional encoding
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, :-2:2][:, :, :-4:3]
|
||||
|
||||
|
||||
class Conv2dSubsampling8(BaseSubsampling):
|
||||
"""Convolutional 2D subsampling (to 1/8 length).
|
||||
|
||||
Args:
|
||||
idim (int): Input dimension.
|
||||
odim (int): Output dimension.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
||||
pos_enc_class: torch.nn.Module):
|
||||
"""Construct an Conv2dSubsampling8 object."""
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Sequential(
|
||||
torch.nn.Conv2d(1, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Conv2d(odim, odim, 3, 2),
|
||||
torch.nn.ReLU(),
|
||||
)
|
||||
self.linear = torch.nn.Linear(
|
||||
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
|
||||
self.pos_enc = pos_enc_class
|
||||
self.subsampling_rate = 8
|
||||
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
|
||||
self.right_context = 14
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_mask: torch.Tensor,
|
||||
offset: int = 0
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (#batch, time, idim).
|
||||
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
||||
where time' = time // 8.
|
||||
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
||||
where time' = time // 8.
|
||||
torch.Tensor: positional encoding
|
||||
"""
|
||||
x = x.unsqueeze(1) # (b, c, t, f)
|
||||
x = self.conv(x)
|
||||
b, c, t, f = x.size()
|
||||
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
x, pos_emb = self.pos_enc(x, offset)
|
||||
return x, pos_emb, x_mask[:, :, :-2:2][:, :, :-2:2][:, :, :-2:2]
|
||||
Reference in New Issue
Block a user