This commit is contained in:
Zchen
2025-10-16 21:51:43 +08:00
parent eefff1ce5e
commit 6f94ad5fae

View File

@@ -97,25 +97,16 @@ class BrainToTextDecoderTrainerTF:
print("✅ Optimizer created")
print("🔧 Pre-building optimizer state for TPU...")
# Force optimizer to build its internal state within strategy scope
# This prevents the 'NoneType' strategy error during first apply_gradients
# Build optimizer within strategy scope but don't apply gradients yet
# The actual gradient application will happen in distributed training context
try:
print("✅ Building optimizer with complete state initialization...")
print("✅ Building optimizer with model variables...")
# First, explicitly build the optimizer with model variables
# Explicitly build the optimizer with model variables
print(f"Building optimizer with {len(self.model.trainable_variables)} variables")
self.optimizer.build(self.model.trainable_variables)
print("✅ Optimizer built with model variables")
# Create dummy gradients and variables for full state initialization
dummy_grads = [tf.zeros_like(var) for var in self.model.trainable_variables]
print(f"Created {len(dummy_grads)} dummy gradients")
# Apply dummy gradients to fully initialize optimizer state
# This ensures all optimizer variables are created within the strategy scope
self.optimizer.apply_gradients(zip(dummy_grads, self.model.trainable_variables))
print("✅ Optimizer state fully initialized with dummy gradients")
# Verify optimizer is properly built
print(f"Optimizer iterations: {self.optimizer.iterations}")
print(f"Optimizer built: {self.optimizer.built}")
@@ -127,6 +118,7 @@ class BrainToTextDecoderTrainerTF:
print("⚠️ Optimizer has no internal variables - this might cause issues")
print("✅ Optimizer pre-build completed successfully")
print("📝 Note: Optimizer state will be fully initialized on first training step")
except Exception as e:
print(f"❌ CRITICAL: Could not pre-build optimizer state: {e}")
@@ -603,36 +595,32 @@ class BrainToTextDecoderTrainerTF:
# Apply gradients (only for variables that have gradients)
if len(filtered_gradients) > 0:
# Apply gradients with comprehensive error handling
# The optimizer should already be built and have all necessary variables
try:
# Check if optimizer is properly built before applying gradients
if not self.optimizer.built:
print("WARNING: Optimizer not built, building now...")
# This should not happen if pre-build worked correctly
self.optimizer.build(filtered_variables)
# Apply gradients - this should work since optimizer is pre-built
# Apply gradients - optimizer should be built and ready
# This will work correctly in distributed training context
self.optimizer.apply_gradients(zip(filtered_gradients, filtered_variables))
except AttributeError as e:
print("CRITICAL ERROR in gradient application:")
print(f"Error: {e}")
print("This indicates the optimizer lost its strategy context")
print(f"Optimizer built: {self.optimizer.built}")
print(f"Number of gradients: {len(filtered_gradients)}")
print(f"Number of variables: {len(filtered_variables)}")
if "merge_call" in str(e) or "replica_context" in str(e):
print("CRITICAL ERROR: Distributed training context issue")
print(f"Error: {e}")
print("This indicates TPU strategy context is not properly set up")
# Check current strategy
current_strategy = tf.distribute.get_strategy()
print(f"Current strategy: {type(current_strategy).__name__}")
print(f"Training strategy: {type(self.strategy).__name__}")
# Try to get current strategy and replica context info
try:
current_strategy = tf.distribute.get_strategy()
replica_context = tf.distribute.get_replica_context()
print(f"Current strategy: {type(current_strategy).__name__}")
print(f"Replica context: {replica_context}")
except:
print("Could not get strategy/context information")
# Re-raise with more context
raise RuntimeError(f"Gradient application failed - optimizer strategy context lost: {e}")
raise RuntimeError(f"TPU distributed training context error: {e}")
else:
print(f"Optimizer AttributeError: {e}")
raise
except Exception as e:
# Catch any other errors during gradient application
print("Unexpected error during gradient application:")
print(f"Error type: {type(e).__name__}")
print(f"Error message: {e}")