diff --git a/model_training_nnn_tpu/rnn_model_tf.py b/model_training_nnn_tpu/rnn_model_tf.py index 14dd242..e34fcf2 100644 --- a/model_training_nnn_tpu/rnn_model_tf.py +++ b/model_training_nnn_tpu/rnn_model_tf.py @@ -99,13 +99,13 @@ class NoiseModel(keras.Model): self.h0_1 = self.add_weight( name='h0_1', shape=(1, self.input_size), - initializer='glorot_uniform', + initializer=tf.keras.initializers.GlorotUniform(), trainable=True ) self.h0_2 = self.add_weight( name='h0_2', shape=(1, self.input_size), - initializer='glorot_uniform', + initializer=tf.keras.initializers.GlorotUniform(), trainable=True ) @@ -284,19 +284,19 @@ class CleanSpeechModel(keras.Model): self.h0_1 = self.add_weight( name='h0_1', shape=(1, n_units), - initializer='glorot_uniform', + initializer=tf.keras.initializers.GlorotUniform(), trainable=True ) self.h0_2 = self.add_weight( name='h0_2', shape=(1, n_units), - initializer='glorot_uniform', + initializer=tf.keras.initializers.GlorotUniform(), trainable=True ) self.h0_3 = self.add_weight( name='h0_3', shape=(1, n_units), - initializer='glorot_uniform', + initializer=tf.keras.initializers.GlorotUniform(), trainable=True ) @@ -434,13 +434,13 @@ class NoisySpeechModel(keras.Model): self.h0_1 = self.add_weight( name='h0_1', shape=(1, n_units), - initializer='glorot_uniform', + initializer=tf.keras.initializers.GlorotUniform(), trainable=True ) self.h0_2 = self.add_weight( name='h0_2', shape=(1, n_units), - initializer='glorot_uniform', + initializer=tf.keras.initializers.GlorotUniform(), trainable=True )