This commit is contained in:
Zchen
2025-10-20 23:34:44 +08:00
parent e399cf262a
commit 5a0079641a

View File

@@ -1,6 +1,5 @@
import os
import tensorflow as tf
import tensorflow.keras.backend as K
import numpy as np
import time
import json
@@ -18,6 +17,9 @@ except ImportError:
print("Warning: editdistance not available, falling back to approximation")
editdistance = None
# XLA-compatible CTC loss implementation
from tf_seq2seq_losses import classic_ctc_loss
from rnn_model_tf import (
TripleGRUDecoder,
create_tpu_strategy,
@@ -33,77 +35,8 @@ from dataset_tf import (
)
def ctc_loss_for_tpu(y_true, y_pred, input_length, label_length):
"""
TPU-compatible CTC loss function using Keras backend
This implementation uses K.ctc_batch_cost which is often more robust
for XLA compilation than tf.nn.ctc_loss, especially in complex model graphs.
Args:
y_true: Dense labels [batch_size, max_label_len]
y_pred: Logits [batch_size, time_steps, num_classes]
input_length: Logit sequence lengths [batch_size]
label_length: True label sequence lengths [batch_size]
Returns:
Scalar CTC loss value
"""
# K.ctc_batch_cost requires logits to be time-major [time_steps, batch_size, num_classes]
y_pred_time_major = tf.transpose(y_pred, [1, 0, 2])
# Ensure correct data types for Keras backend
y_true = tf.cast(y_true, tf.float32) # K.ctc_batch_cost expects float32 labels
input_length = tf.cast(input_length, tf.int32)
label_length = tf.cast(label_length, tf.int32)
# Calculate CTC loss using Keras backend (more XLA-friendly)
loss = K.ctc_batch_cost(y_true, y_pred_time_major, input_length, label_length)
return tf.reduce_mean(loss)
def dense_to_sparse(dense_tensor, sequence_lengths):
"""
Convert dense tensor to sparse tensor for CTC loss with dynamic shapes
Args:
dense_tensor: Dense tensor with shape [batch_size, max_seq_len]
sequence_lengths: Actual sequence lengths [batch_size]
Returns:
SparseTensor suitable for tf.nn.ctc_loss
"""
# Create mask for valid (non-zero) elements within sequence lengths
batch_size = tf.shape(dense_tensor)[0]
max_seq_len = tf.shape(dense_tensor)[1]
# Create range indices
batch_indices = tf.range(batch_size)
seq_indices = tf.range(max_seq_len)
# Create meshgrid for batch and sequence dimensions
batch_mesh, seq_mesh = tf.meshgrid(batch_indices, seq_indices, indexing='ij')
# Create mask based on sequence lengths and non-zero values
length_mask = seq_mesh < tf.expand_dims(sequence_lengths, 1)
value_mask = tf.not_equal(dense_tensor, 0)
combined_mask = tf.logical_and(length_mask, value_mask)
# Get indices of valid elements
indices = tf.where(combined_mask)
# Get values at valid indices
values = tf.gather_nd(dense_tensor, indices)
# Create sparse tensor
dense_shape = tf.cast(tf.shape(dense_tensor), tf.int64)
return tf.SparseTensor(
indices=tf.cast(indices, tf.int64),
values=tf.cast(values, tf.int32),
dense_shape=dense_shape
)
class BrainToTextDecoderTrainerTF:
@@ -626,20 +559,22 @@ class BrainToTextDecoderTrainerTF:
# Calculate losses using TPU-compatible CTC implementation
if use_full:
# Clean CTC loss - using Keras backend for XLA compatibility
clean_loss = ctc_loss_for_tpu(
y_true=tf.cast(labels, tf.float32), # Dense labels as float32
y_pred=clean_logits,
input_length=adjusted_lens,
label_length=phone_seq_lens
# Clean CTC loss - using XLA-compatible classic_ctc_loss
clean_loss = classic_ctc_loss(
labels=tf.cast(labels, tf.int32), # Dense labels as int32
logits=clean_logits,
label_length=phone_seq_lens,
logit_length=adjusted_lens,
blank_index=0
)
# Noisy CTC loss - using Keras backend for XLA compatibility
noisy_loss = ctc_loss_for_tpu(
y_true=tf.cast(labels, tf.float32), # Reuse same dense labels
y_pred=noisy_logits,
input_length=adjusted_lens,
label_length=phone_seq_lens
# Noisy CTC loss - using XLA-compatible classic_ctc_loss
noisy_loss = classic_ctc_loss(
labels=tf.cast(labels, tf.int32), # Dense labels as int32
logits=noisy_logits,
label_length=phone_seq_lens,
logit_length=adjusted_lens,
blank_index=0
)
# Optional noise L2 regularization
@@ -649,12 +584,13 @@ class BrainToTextDecoderTrainerTF:
loss = clean_loss + self.adv_noisy_loss_weight * noisy_loss + self.adv_noise_l2_weight * noise_l2
else:
# Standard CTC loss - using Keras backend for XLA compatibility
loss = ctc_loss_for_tpu(
y_true=tf.cast(labels, tf.float32), # Dense labels as float32
y_pred=clean_logits,
input_length=adjusted_lens,
label_length=phone_seq_lens
# Standard CTC loss - using XLA-compatible classic_ctc_loss
loss = classic_ctc_loss(
labels=tf.cast(labels, tf.int32), # Dense labels as int32
logits=clean_logits,
label_length=phone_seq_lens,
logit_length=adjusted_lens,
blank_index=0
)
# AdamW handles weight decay automatically - no manual L2 regularization needed
@@ -710,12 +646,13 @@ class BrainToTextDecoderTrainerTF:
# Forward pass (inference mode only)
logits = self.model(features, day_indices, None, False, 'inference', training=False)
# Calculate loss using TPU-compatible CTC implementation
loss = ctc_loss_for_tpu(
y_true=tf.cast(labels, tf.float32), # Dense labels as float32
y_pred=logits,
input_length=adjusted_lens,
label_length=phone_seq_lens
# Calculate loss using XLA-compatible classic_ctc_loss
loss = classic_ctc_loss(
labels=tf.cast(labels, tf.int32), # Dense labels as int32
logits=logits,
label_length=phone_seq_lens,
logit_length=adjusted_lens,
blank_index=0
)
# Greedy decoding for PER calculation