f
This commit is contained in:
@@ -1,6 +1,5 @@
|
||||
import os
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras.backend as K
|
||||
import numpy as np
|
||||
import time
|
||||
import json
|
||||
@@ -18,6 +17,9 @@ except ImportError:
|
||||
print("Warning: editdistance not available, falling back to approximation")
|
||||
editdistance = None
|
||||
|
||||
# XLA-compatible CTC loss implementation
|
||||
from tf_seq2seq_losses import classic_ctc_loss
|
||||
|
||||
from rnn_model_tf import (
|
||||
TripleGRUDecoder,
|
||||
create_tpu_strategy,
|
||||
@@ -33,77 +35,8 @@ from dataset_tf import (
|
||||
)
|
||||
|
||||
|
||||
def ctc_loss_for_tpu(y_true, y_pred, input_length, label_length):
|
||||
"""
|
||||
TPU-compatible CTC loss function using Keras backend
|
||||
|
||||
This implementation uses K.ctc_batch_cost which is often more robust
|
||||
for XLA compilation than tf.nn.ctc_loss, especially in complex model graphs.
|
||||
|
||||
Args:
|
||||
y_true: Dense labels [batch_size, max_label_len]
|
||||
y_pred: Logits [batch_size, time_steps, num_classes]
|
||||
input_length: Logit sequence lengths [batch_size]
|
||||
label_length: True label sequence lengths [batch_size]
|
||||
|
||||
Returns:
|
||||
Scalar CTC loss value
|
||||
"""
|
||||
# K.ctc_batch_cost requires logits to be time-major [time_steps, batch_size, num_classes]
|
||||
y_pred_time_major = tf.transpose(y_pred, [1, 0, 2])
|
||||
|
||||
# Ensure correct data types for Keras backend
|
||||
y_true = tf.cast(y_true, tf.float32) # K.ctc_batch_cost expects float32 labels
|
||||
input_length = tf.cast(input_length, tf.int32)
|
||||
label_length = tf.cast(label_length, tf.int32)
|
||||
|
||||
# Calculate CTC loss using Keras backend (more XLA-friendly)
|
||||
loss = K.ctc_batch_cost(y_true, y_pred_time_major, input_length, label_length)
|
||||
|
||||
return tf.reduce_mean(loss)
|
||||
|
||||
|
||||
def dense_to_sparse(dense_tensor, sequence_lengths):
|
||||
"""
|
||||
Convert dense tensor to sparse tensor for CTC loss with dynamic shapes
|
||||
|
||||
Args:
|
||||
dense_tensor: Dense tensor with shape [batch_size, max_seq_len]
|
||||
sequence_lengths: Actual sequence lengths [batch_size]
|
||||
|
||||
Returns:
|
||||
SparseTensor suitable for tf.nn.ctc_loss
|
||||
"""
|
||||
# Create mask for valid (non-zero) elements within sequence lengths
|
||||
batch_size = tf.shape(dense_tensor)[0]
|
||||
max_seq_len = tf.shape(dense_tensor)[1]
|
||||
|
||||
# Create range indices
|
||||
batch_indices = tf.range(batch_size)
|
||||
seq_indices = tf.range(max_seq_len)
|
||||
|
||||
# Create meshgrid for batch and sequence dimensions
|
||||
batch_mesh, seq_mesh = tf.meshgrid(batch_indices, seq_indices, indexing='ij')
|
||||
|
||||
# Create mask based on sequence lengths and non-zero values
|
||||
length_mask = seq_mesh < tf.expand_dims(sequence_lengths, 1)
|
||||
value_mask = tf.not_equal(dense_tensor, 0)
|
||||
combined_mask = tf.logical_and(length_mask, value_mask)
|
||||
|
||||
# Get indices of valid elements
|
||||
indices = tf.where(combined_mask)
|
||||
|
||||
# Get values at valid indices
|
||||
values = tf.gather_nd(dense_tensor, indices)
|
||||
|
||||
# Create sparse tensor
|
||||
dense_shape = tf.cast(tf.shape(dense_tensor), tf.int64)
|
||||
|
||||
return tf.SparseTensor(
|
||||
indices=tf.cast(indices, tf.int64),
|
||||
values=tf.cast(values, tf.int32),
|
||||
dense_shape=dense_shape
|
||||
)
|
||||
|
||||
|
||||
class BrainToTextDecoderTrainerTF:
|
||||
@@ -626,20 +559,22 @@ class BrainToTextDecoderTrainerTF:
|
||||
|
||||
# Calculate losses using TPU-compatible CTC implementation
|
||||
if use_full:
|
||||
# Clean CTC loss - using Keras backend for XLA compatibility
|
||||
clean_loss = ctc_loss_for_tpu(
|
||||
y_true=tf.cast(labels, tf.float32), # Dense labels as float32
|
||||
y_pred=clean_logits,
|
||||
input_length=adjusted_lens,
|
||||
label_length=phone_seq_lens
|
||||
# Clean CTC loss - using XLA-compatible classic_ctc_loss
|
||||
clean_loss = classic_ctc_loss(
|
||||
labels=tf.cast(labels, tf.int32), # Dense labels as int32
|
||||
logits=clean_logits,
|
||||
label_length=phone_seq_lens,
|
||||
logit_length=adjusted_lens,
|
||||
blank_index=0
|
||||
)
|
||||
|
||||
# Noisy CTC loss - using Keras backend for XLA compatibility
|
||||
noisy_loss = ctc_loss_for_tpu(
|
||||
y_true=tf.cast(labels, tf.float32), # Reuse same dense labels
|
||||
y_pred=noisy_logits,
|
||||
input_length=adjusted_lens,
|
||||
label_length=phone_seq_lens
|
||||
# Noisy CTC loss - using XLA-compatible classic_ctc_loss
|
||||
noisy_loss = classic_ctc_loss(
|
||||
labels=tf.cast(labels, tf.int32), # Dense labels as int32
|
||||
logits=noisy_logits,
|
||||
label_length=phone_seq_lens,
|
||||
logit_length=adjusted_lens,
|
||||
blank_index=0
|
||||
)
|
||||
|
||||
# Optional noise L2 regularization
|
||||
@@ -649,12 +584,13 @@ class BrainToTextDecoderTrainerTF:
|
||||
|
||||
loss = clean_loss + self.adv_noisy_loss_weight * noisy_loss + self.adv_noise_l2_weight * noise_l2
|
||||
else:
|
||||
# Standard CTC loss - using Keras backend for XLA compatibility
|
||||
loss = ctc_loss_for_tpu(
|
||||
y_true=tf.cast(labels, tf.float32), # Dense labels as float32
|
||||
y_pred=clean_logits,
|
||||
input_length=adjusted_lens,
|
||||
label_length=phone_seq_lens
|
||||
# Standard CTC loss - using XLA-compatible classic_ctc_loss
|
||||
loss = classic_ctc_loss(
|
||||
labels=tf.cast(labels, tf.int32), # Dense labels as int32
|
||||
logits=clean_logits,
|
||||
label_length=phone_seq_lens,
|
||||
logit_length=adjusted_lens,
|
||||
blank_index=0
|
||||
)
|
||||
|
||||
# AdamW handles weight decay automatically - no manual L2 regularization needed
|
||||
@@ -710,12 +646,13 @@ class BrainToTextDecoderTrainerTF:
|
||||
# Forward pass (inference mode only)
|
||||
logits = self.model(features, day_indices, None, False, 'inference', training=False)
|
||||
|
||||
# Calculate loss using TPU-compatible CTC implementation
|
||||
loss = ctc_loss_for_tpu(
|
||||
y_true=tf.cast(labels, tf.float32), # Dense labels as float32
|
||||
y_pred=logits,
|
||||
input_length=adjusted_lens,
|
||||
label_length=phone_seq_lens
|
||||
# Calculate loss using XLA-compatible classic_ctc_loss
|
||||
loss = classic_ctc_loss(
|
||||
labels=tf.cast(labels, tf.int32), # Dense labels as int32
|
||||
logits=logits,
|
||||
label_length=phone_seq_lens,
|
||||
logit_length=adjusted_lens,
|
||||
blank_index=0
|
||||
)
|
||||
|
||||
# Greedy decoding for PER calculation
|
||||
|
Reference in New Issue
Block a user