lm redis bool fix
This commit is contained in:
@@ -450,20 +450,20 @@ def main(args):
|
|||||||
# create a nice dict of params to put into redis
|
# create a nice dict of params to put into redis
|
||||||
lm_args = {
|
lm_args = {
|
||||||
'lm_path': lm_path,
|
'lm_path': lm_path,
|
||||||
'max_active': max_active,
|
'max_active': int(max_active),
|
||||||
'min_active': min_active,
|
'min_active': int(min_active),
|
||||||
'beam': beam,
|
'beam': float(beam),
|
||||||
'lattice_beam': lattice_beam,
|
'lattice_beam': float(lattice_beam),
|
||||||
'acoustic_scale': acoustic_scale,
|
'acoustic_scale': float(acoustic_scale),
|
||||||
'ctc_blank_skip_threshold': ctc_blank_skip_threshold,
|
'ctc_blank_skip_threshold': float(ctc_blank_skip_threshold),
|
||||||
'length_penalty': length_penalty,
|
'length_penalty': float(length_penalty),
|
||||||
'nbest': nbest,
|
'nbest': int(nbest),
|
||||||
'blank_penalty': blank_penalty,
|
'blank_penalty': float(blank_penalty),
|
||||||
'alpha': alpha,
|
'alpha': float(alpha),
|
||||||
'do_opt': do_opt,
|
'do_opt': int(do_opt),
|
||||||
'rescore': rescore,
|
'rescore': int(rescore),
|
||||||
'top_candidates_to_augment': top_candidates_to_augment,
|
'top_candidates_to_augment': int(top_candidates_to_augment),
|
||||||
'score_penalty_percent': score_penalty_percent,
|
'score_penalty_percent': float(score_penalty_percent),
|
||||||
}
|
}
|
||||||
|
|
||||||
# pick GPU
|
# pick GPU
|
||||||
@@ -671,7 +671,6 @@ def main(args):
|
|||||||
blank_penalty = float(entry_data.get(b'blank_penalty', blank_penalty))
|
blank_penalty = float(entry_data.get(b'blank_penalty', blank_penalty))
|
||||||
alpha = float(entry_data.get(b'alpha', alpha))
|
alpha = float(entry_data.get(b'alpha', alpha))
|
||||||
do_opt = int(entry_data.get(b'do_opt', do_opt))
|
do_opt = int(entry_data.get(b'do_opt', do_opt))
|
||||||
# opt_cache_dir = entry_data.get(b'opt_cache_dir', opt_cache_dir).decode()
|
|
||||||
rescore = int(entry_data.get(b'rescore', rescore))
|
rescore = int(entry_data.get(b'rescore', rescore))
|
||||||
top_candidates_to_augment = int(entry_data.get(b'top_candidates_to_augment', top_candidates_to_augment))
|
top_candidates_to_augment = int(entry_data.get(b'top_candidates_to_augment', top_candidates_to_augment))
|
||||||
score_penalty_percent = float(entry_data.get(b'score_penalty_percent', score_penalty_percent))
|
score_penalty_percent = float(entry_data.get(b'score_penalty_percent', score_penalty_percent))
|
||||||
@@ -679,21 +678,20 @@ def main(args):
|
|||||||
# make sure that the update remote lm args are put into redis nicely
|
# make sure that the update remote lm args are put into redis nicely
|
||||||
lm_args = {
|
lm_args = {
|
||||||
'lm_path': lm_path,
|
'lm_path': lm_path,
|
||||||
'max_active': max_active,
|
'max_active': int(max_active),
|
||||||
'min_active': min_active,
|
'min_active': int(min_active),
|
||||||
'beam': beam,
|
'beam': float(beam),
|
||||||
'lattice_beam': lattice_beam,
|
'lattice_beam': float(lattice_beam),
|
||||||
'acoustic_scale': acoustic_scale,
|
'acoustic_scale': float(acoustic_scale),
|
||||||
'ctc_blank_skip_threshold': ctc_blank_skip_threshold,
|
'ctc_blank_skip_threshold': float(ctc_blank_skip_threshold),
|
||||||
'length_penalty': length_penalty,
|
'length_penalty': float(length_penalty),
|
||||||
'nbest': nbest,
|
'nbest': int(nbest),
|
||||||
'blank_penalty': blank_penalty,
|
'blank_penalty': float(blank_penalty),
|
||||||
'alpha': alpha,
|
'alpha': float(alpha),
|
||||||
'do_opt': do_opt,
|
'do_opt': int(do_opt),
|
||||||
# 'opt_cache_dir': opt_cache_dir,
|
'rescore': int(rescore),
|
||||||
'rescore': rescore,
|
'top_candidates_to_augment': int(top_candidates_to_augment),
|
||||||
'top_candidates_to_augment': top_candidates_to_augment,
|
'score_penalty_percent': float(score_penalty_percent),
|
||||||
'score_penalty_percent': score_penalty_percent,
|
|
||||||
}
|
}
|
||||||
r.xadd('remote_lm_args', lm_args)
|
r.xadd('remote_lm_args', lm_args)
|
||||||
|
|
||||||
|
@@ -154,10 +154,14 @@ for session, data in test_data.items():
|
|||||||
# make sure that the standalone language model is running on the localhost redis ip
|
# make sure that the standalone language model is running on the localhost redis ip
|
||||||
# see README.md for instructions on how to run the language model
|
# see README.md for instructions on how to run the language model
|
||||||
r = redis.Redis(host='localhost', port=6379, db=0)
|
r = redis.Redis(host='localhost', port=6379, db=0)
|
||||||
|
r.flushall() # clear all streams in redis
|
||||||
|
|
||||||
|
# define redis streams for the remote language model
|
||||||
remote_lm_input_stream = 'remote_lm_input'
|
remote_lm_input_stream = 'remote_lm_input'
|
||||||
remote_lm_output_partial_stream = 'remote_lm_output_partial'
|
remote_lm_output_partial_stream = 'remote_lm_output_partial'
|
||||||
remote_lm_output_final_stream = 'remote_lm_output_final'
|
remote_lm_output_final_stream = 'remote_lm_output_final'
|
||||||
|
|
||||||
|
# set timestamps for last entries seen in the redis streams
|
||||||
remote_lm_output_partial_lastEntrySeen = get_current_redis_time_ms(r)
|
remote_lm_output_partial_lastEntrySeen = get_current_redis_time_ms(r)
|
||||||
remote_lm_output_final_lastEntrySeen = get_current_redis_time_ms(r)
|
remote_lm_output_final_lastEntrySeen = get_current_redis_time_ms(r)
|
||||||
remote_lm_done_resetting_lastEntrySeen = get_current_redis_time_ms(r)
|
remote_lm_done_resetting_lastEntrySeen = get_current_redis_time_ms(r)
|
||||||
|
Reference in New Issue
Block a user