667 lines
23 KiB
Python
667 lines
23 KiB
Python
![]() |
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
# Copyright 2014-2016 Brno University of Technology (author: Karel Vesely)
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License")
|
||
|
|
||
|
import numpy as np
|
||
|
import sys, os, re, gzip, struct
|
||
|
|
||
|
#################################################
|
||
|
# Adding kaldi tools to shell path,
|
||
|
|
||
|
# Select kaldi,
|
||
|
if not 'KALDI_ROOT' in os.environ:
|
||
|
# Default! To change run python with 'export KALDI_ROOT=/some_dir python'
|
||
|
os.environ['KALDI_ROOT']='/mnt/matylda5/iveselyk/Tools/kaldi-trunk'
|
||
|
|
||
|
# Add kaldi tools to path,
|
||
|
os.environ['PATH'] = os.popen('echo $KALDI_ROOT/src/bin:$KALDI_ROOT/tools/openfst/bin:$KALDI_ROOT/src/fstbin/:$KALDI_ROOT/src/gmmbin/:$KALDI_ROOT/src/featbin/:$KALDI_ROOT/src/lm/:$KALDI_ROOT/src/sgmmbin/:$KALDI_ROOT/src/sgmm2bin/:$KALDI_ROOT/src/fgmmbin/:$KALDI_ROOT/src/latbin/:$KALDI_ROOT/src/nnetbin:$KALDI_ROOT/src/nnet2bin:$KALDI_ROOT/src/nnet3bin:$KALDI_ROOT/src/online2bin/:$KALDI_ROOT/src/ivectorbin/:$KALDI_ROOT/src/lmbin/').readline().strip() + ':' + os.environ['PATH']
|
||
|
|
||
|
|
||
|
#################################################
|
||
|
# Define all custom exceptions,
|
||
|
class UnsupportedDataType(Exception): pass
|
||
|
class UnknownVectorHeader(Exception): pass
|
||
|
class UnknownMatrixHeader(Exception): pass
|
||
|
|
||
|
class BadSampleSize(Exception): pass
|
||
|
class BadInputFormat(Exception): pass
|
||
|
|
||
|
class SubprocessFailed(Exception): pass
|
||
|
|
||
|
#################################################
|
||
|
# Data-type independent helper functions,
|
||
|
|
||
|
def open_or_fd(file, mode='rb'):
|
||
|
""" fd = open_or_fd(file)
|
||
|
Open file, gzipped file, pipe, or forward the file-descriptor.
|
||
|
Eventually seeks in the 'file' argument contains ':offset' suffix.
|
||
|
"""
|
||
|
offset = None
|
||
|
try:
|
||
|
# strip 'ark:' prefix from r{x,w}filename (optional),
|
||
|
if re.search('^(ark|scp)(,scp|,b|,t|,n?f|,n?p|,b?o|,n?s|,n?cs)*:', file):
|
||
|
(prefix,file) = file.split(':',1)
|
||
|
# separate offset from filename (optional),
|
||
|
if re.search(':[0-9]+$', file):
|
||
|
(file,offset) = file.rsplit(':',1)
|
||
|
# input pipe?
|
||
|
if file[-1] == '|':
|
||
|
fd = popen(file[:-1], 'rb') # custom,
|
||
|
# output pipe?
|
||
|
elif file[0] == '|':
|
||
|
fd = popen(file[1:], 'wb') # custom,
|
||
|
# is it gzipped?
|
||
|
elif file.split('.')[-1] == 'gz':
|
||
|
fd = gzip.open(file, mode)
|
||
|
# a normal file...
|
||
|
else:
|
||
|
fd = open(file, mode)
|
||
|
except TypeError:
|
||
|
# 'file' is opened file descriptor,
|
||
|
fd = file
|
||
|
# Eventually seek to offset,
|
||
|
if offset != None: fd.seek(int(offset))
|
||
|
return fd
|
||
|
|
||
|
# based on '/usr/local/lib/python3.4/os.py'
|
||
|
def popen(cmd, mode="rb"):
|
||
|
if not isinstance(cmd, str):
|
||
|
raise TypeError("invalid cmd type (%s, expected string)" % type(cmd))
|
||
|
|
||
|
import subprocess, io, threading
|
||
|
|
||
|
# cleanup function for subprocesses,
|
||
|
def cleanup(proc, cmd):
|
||
|
ret = proc.wait()
|
||
|
if ret > 0:
|
||
|
raise SubprocessFailed('cmd %s returned %d !' % (cmd,ret))
|
||
|
return
|
||
|
|
||
|
# text-mode,
|
||
|
if mode == "r":
|
||
|
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)
|
||
|
threading.Thread(target=cleanup,args=(proc,cmd)).start() # clean-up thread,
|
||
|
return io.TextIOWrapper(proc.stdout)
|
||
|
elif mode == "w":
|
||
|
proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE)
|
||
|
threading.Thread(target=cleanup,args=(proc,cmd)).start() # clean-up thread,
|
||
|
return io.TextIOWrapper(proc.stdin)
|
||
|
# binary,
|
||
|
elif mode == "rb":
|
||
|
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)
|
||
|
threading.Thread(target=cleanup,args=(proc,cmd)).start() # clean-up thread,
|
||
|
return proc.stdout
|
||
|
elif mode == "wb":
|
||
|
proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE)
|
||
|
threading.Thread(target=cleanup,args=(proc,cmd)).start() # clean-up thread,
|
||
|
return proc.stdin
|
||
|
# sanity,
|
||
|
else:
|
||
|
raise ValueError("invalid mode %s" % mode)
|
||
|
|
||
|
|
||
|
def read_key(fd):
|
||
|
""" [key] = read_key(fd)
|
||
|
Read the utterance-key from the opened ark/stream descriptor 'fd'.
|
||
|
"""
|
||
|
key = ''
|
||
|
while 1:
|
||
|
char = fd.read(1).decode("latin1")
|
||
|
if char == '' : break
|
||
|
if char == ' ' : break
|
||
|
key += char
|
||
|
key = key.strip()
|
||
|
if key == '': return None # end of file,
|
||
|
assert(re.match('^\S+$',key) != None) # check format (no whitespace!)
|
||
|
return key
|
||
|
|
||
|
|
||
|
#################################################
|
||
|
# Integer vectors (alignments, ...),
|
||
|
|
||
|
def read_ali_ark(file_or_fd):
|
||
|
""" Alias to 'read_vec_int_ark()' """
|
||
|
return read_vec_int_ark(file_or_fd)
|
||
|
|
||
|
def read_vec_int_ark(file_or_fd):
|
||
|
""" generator(key,vec) = read_vec_int_ark(file_or_fd)
|
||
|
Create generator of (key,vector<int>) tuples, which reads from the ark file/stream.
|
||
|
file_or_fd : ark, gzipped ark, pipe or opened file descriptor.
|
||
|
|
||
|
Read ark to a 'dictionary':
|
||
|
d = { u:d for u,d in kaldi_io.read_vec_int_ark(file) }
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
try:
|
||
|
key = read_key(fd)
|
||
|
while key:
|
||
|
ali = read_vec_int(fd)
|
||
|
yield key, ali
|
||
|
key = read_key(fd)
|
||
|
finally:
|
||
|
if fd is not file_or_fd: fd.close()
|
||
|
|
||
|
def read_vec_int_scp(file_or_fd):
|
||
|
""" generator(key,vec) = read_vec_int_scp(file_or_fd)
|
||
|
Returns generator of (key,vector<int>) tuples, read according to kaldi scp.
|
||
|
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
|
||
|
|
||
|
Iterate the scp:
|
||
|
for key,vec in kaldi_io.read_vec_int_scp(file):
|
||
|
...
|
||
|
|
||
|
Read scp to a 'dictionary':
|
||
|
d = { key:vec for key,mat in kaldi_io.read_vec_int_scp(file) }
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
try:
|
||
|
for line in fd:
|
||
|
(key,rxfile) = line.decode().split(' ')
|
||
|
vec = read_vec_int(rxfile)
|
||
|
yield key, vec
|
||
|
finally:
|
||
|
if fd is not file_or_fd : fd.close()
|
||
|
|
||
|
def read_vec_int(file_or_fd):
|
||
|
""" [int-vec] = read_vec_int(file_or_fd)
|
||
|
Read kaldi integer vector, ascii or binary input,
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
binary = fd.read(2).decode()
|
||
|
if binary == '\0B': # binary flag
|
||
|
assert(fd.read(1).decode() == '\4'); # int-size
|
||
|
vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # vector dim
|
||
|
# Elements from int32 vector are sored in tuples: (sizeof(int32), value),
|
||
|
vec = np.frombuffer(fd.read(vec_size*5), dtype=[('size','int8'),('value','int32')], count=vec_size)
|
||
|
assert(vec[0]['size'] == 4) # int32 size,
|
||
|
ans = vec[:]['value'] # values are in 2nd column,
|
||
|
else: # ascii,
|
||
|
arr = (binary + fd.readline().decode()).strip().split()
|
||
|
try:
|
||
|
arr.remove('['); arr.remove(']') # optionally
|
||
|
except ValueError:
|
||
|
pass
|
||
|
ans = np.array(arr, dtype=int)
|
||
|
if fd is not file_or_fd : fd.close() # cleanup
|
||
|
return ans
|
||
|
|
||
|
# Writing,
|
||
|
def write_vec_int(file_or_fd, v, key=''):
|
||
|
""" write_vec_int(f, v, key='')
|
||
|
Write a binary kaldi integer vector to filename or stream.
|
||
|
Arguments:
|
||
|
file_or_fd : filename or opened file descriptor for writing,
|
||
|
v : the vector to be stored,
|
||
|
key (optional) : used for writing ark-file, the utterance-id gets written before the vector.
|
||
|
|
||
|
Example of writing single vector:
|
||
|
kaldi_io.write_vec_int(filename, vec)
|
||
|
|
||
|
Example of writing arkfile:
|
||
|
with open(ark_file,'w') as f:
|
||
|
for key,vec in dict.iteritems():
|
||
|
kaldi_io.write_vec_flt(f, vec, key=key)
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd, mode='wb')
|
||
|
if sys.version_info[0] == 3: assert(fd.mode == 'wb')
|
||
|
try:
|
||
|
if key != '' : fd.write((key+' ').encode("latin1")) # ark-files have keys (utterance-id),
|
||
|
fd.write('\0B'.encode()) # we write binary!
|
||
|
# dim,
|
||
|
fd.write('\4'.encode()) # int32 type,
|
||
|
fd.write(struct.pack(np.dtype('int32').char, v.shape[0]))
|
||
|
# data,
|
||
|
for i in range(len(v)):
|
||
|
fd.write('\4'.encode()) # int32 type,
|
||
|
fd.write(struct.pack(np.dtype('int32').char, v[i])) # binary,
|
||
|
finally:
|
||
|
if fd is not file_or_fd : fd.close()
|
||
|
|
||
|
|
||
|
#################################################
|
||
|
# Float vectors (confidences, ivectors, ...),
|
||
|
|
||
|
# Reading,
|
||
|
def read_vec_flt_scp(file_or_fd):
|
||
|
""" generator(key,mat) = read_vec_flt_scp(file_or_fd)
|
||
|
Returns generator of (key,vector) tuples, read according to kaldi scp.
|
||
|
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
|
||
|
|
||
|
Iterate the scp:
|
||
|
for key,vec in kaldi_io.read_vec_flt_scp(file):
|
||
|
...
|
||
|
|
||
|
Read scp to a 'dictionary':
|
||
|
d = { key:mat for key,mat in kaldi_io.read_mat_scp(file) }
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
try:
|
||
|
for line in fd:
|
||
|
(key,rxfile) = line.decode().split(' ')
|
||
|
vec = read_vec_flt(rxfile)
|
||
|
yield key, vec
|
||
|
finally:
|
||
|
if fd is not file_or_fd : fd.close()
|
||
|
|
||
|
def read_vec_flt_ark(file_or_fd):
|
||
|
""" generator(key,vec) = read_vec_flt_ark(file_or_fd)
|
||
|
Create generator of (key,vector<float>) tuples, reading from an ark file/stream.
|
||
|
file_or_fd : ark, gzipped ark, pipe or opened file descriptor.
|
||
|
|
||
|
Read ark to a 'dictionary':
|
||
|
d = { u:d for u,d in kaldi_io.read_vec_flt_ark(file) }
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
try:
|
||
|
key = read_key(fd)
|
||
|
while key:
|
||
|
ali = read_vec_flt(fd)
|
||
|
yield key, ali
|
||
|
key = read_key(fd)
|
||
|
finally:
|
||
|
if fd is not file_or_fd: fd.close()
|
||
|
|
||
|
def read_vec_flt(file_or_fd):
|
||
|
""" [flt-vec] = read_vec_flt(file_or_fd)
|
||
|
Read kaldi float vector, ascii or binary input,
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
binary = fd.read(2).decode()
|
||
|
if binary == '\0B': # binary flag
|
||
|
# Data type,
|
||
|
header = fd.read(3).decode()
|
||
|
if header == 'FV ': sample_size = 4 # floats
|
||
|
elif header == 'DV ': sample_size = 8 # doubles
|
||
|
else: raise UnknownVectorHeader("The header contained '%s'" % header)
|
||
|
assert(sample_size > 0)
|
||
|
# Dimension,
|
||
|
assert(fd.read(1).decode() == '\4'); # int-size
|
||
|
vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # vector dim
|
||
|
# Read whole vector,
|
||
|
buf = fd.read(vec_size * sample_size)
|
||
|
if sample_size == 4 : ans = np.frombuffer(buf, dtype='float32')
|
||
|
elif sample_size == 8 : ans = np.frombuffer(buf, dtype='float64')
|
||
|
else : raise BadSampleSize
|
||
|
return ans
|
||
|
else: # ascii,
|
||
|
arr = (binary + fd.readline().decode()).strip().split()
|
||
|
try:
|
||
|
arr.remove('['); arr.remove(']') # optionally
|
||
|
except ValueError:
|
||
|
pass
|
||
|
ans = np.array(arr, dtype=float)
|
||
|
if fd is not file_or_fd : fd.close() # cleanup
|
||
|
return ans
|
||
|
|
||
|
# Writing,
|
||
|
def write_vec_flt(file_or_fd, v, key=''):
|
||
|
""" write_vec_flt(f, v, key='')
|
||
|
Write a binary kaldi vector to filename or stream. Supports 32bit and 64bit floats.
|
||
|
Arguments:
|
||
|
file_or_fd : filename or opened file descriptor for writing,
|
||
|
v : the vector to be stored,
|
||
|
key (optional) : used for writing ark-file, the utterance-id gets written before the vector.
|
||
|
|
||
|
Example of writing single vector:
|
||
|
kaldi_io.write_vec_flt(filename, vec)
|
||
|
|
||
|
Example of writing arkfile:
|
||
|
with open(ark_file,'w') as f:
|
||
|
for key,vec in dict.iteritems():
|
||
|
kaldi_io.write_vec_flt(f, vec, key=key)
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd, mode='wb')
|
||
|
if sys.version_info[0] == 3: assert(fd.mode == 'wb')
|
||
|
try:
|
||
|
if key != '' : fd.write((key+' ').encode("latin1")) # ark-files have keys (utterance-id),
|
||
|
fd.write('\0B'.encode()) # we write binary!
|
||
|
# Data-type,
|
||
|
if v.dtype == 'float32': fd.write('FV '.encode())
|
||
|
elif v.dtype == 'float64': fd.write('DV '.encode())
|
||
|
else: raise UnsupportedDataType("'%s', please use 'float32' or 'float64'" % v.dtype)
|
||
|
# Dim,
|
||
|
fd.write('\04'.encode())
|
||
|
fd.write(struct.pack(np.dtype('uint32').char, v.shape[0])) # dim
|
||
|
# Data,
|
||
|
fd.write(v.tobytes())
|
||
|
finally:
|
||
|
if fd is not file_or_fd : fd.close()
|
||
|
|
||
|
|
||
|
#################################################
|
||
|
# Float matrices (features, transformations, ...),
|
||
|
|
||
|
# Reading,
|
||
|
def read_mat_scp(file_or_fd):
|
||
|
""" generator(key,mat) = read_mat_scp(file_or_fd)
|
||
|
Returns generator of (key,matrix) tuples, read according to kaldi scp.
|
||
|
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
|
||
|
|
||
|
Iterate the scp:
|
||
|
for key,mat in kaldi_io.read_mat_scp(file):
|
||
|
...
|
||
|
|
||
|
Read scp to a 'dictionary':
|
||
|
d = { key:mat for key,mat in kaldi_io.read_mat_scp(file) }
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
try:
|
||
|
for line in fd:
|
||
|
(key,rxfile) = line.decode().split(' ')
|
||
|
mat = read_mat(rxfile)
|
||
|
yield key, mat
|
||
|
finally:
|
||
|
if fd is not file_or_fd : fd.close()
|
||
|
|
||
|
def read_mat_ark(file_or_fd):
|
||
|
""" generator(key,mat) = read_mat_ark(file_or_fd)
|
||
|
Returns generator of (key,matrix) tuples, read from ark file/stream.
|
||
|
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
|
||
|
|
||
|
Iterate the ark:
|
||
|
for key,mat in kaldi_io.read_mat_ark(file):
|
||
|
...
|
||
|
|
||
|
Read ark to a 'dictionary':
|
||
|
d = { key:mat for key,mat in kaldi_io.read_mat_ark(file) }
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
try:
|
||
|
key = read_key(fd)
|
||
|
while key:
|
||
|
mat = read_mat(fd)
|
||
|
yield key, mat
|
||
|
key = read_key(fd)
|
||
|
finally:
|
||
|
if fd is not file_or_fd : fd.close()
|
||
|
|
||
|
def read_mat(file_or_fd):
|
||
|
""" [mat] = read_mat(file_or_fd)
|
||
|
Reads single kaldi matrix, supports ascii and binary.
|
||
|
file_or_fd : file, gzipped file, pipe or opened file descriptor.
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
try:
|
||
|
binary = fd.read(2).decode()
|
||
|
if binary == '\0B' :
|
||
|
mat = _read_mat_binary(fd)
|
||
|
else:
|
||
|
assert(binary == ' [')
|
||
|
mat = _read_mat_ascii(fd)
|
||
|
finally:
|
||
|
if fd is not file_or_fd: fd.close()
|
||
|
return mat
|
||
|
|
||
|
def _read_mat_binary(fd):
|
||
|
# Data type
|
||
|
header = fd.read(3).decode()
|
||
|
# 'CM', 'CM2', 'CM3' are possible values,
|
||
|
if header.startswith('CM'): return _read_compressed_mat(fd, header)
|
||
|
elif header == 'FM ': sample_size = 4 # floats
|
||
|
elif header == 'DM ': sample_size = 8 # doubles
|
||
|
else: raise UnknownMatrixHeader("The header contained '%s'" % header)
|
||
|
assert(sample_size > 0)
|
||
|
# Dimensions
|
||
|
s1, rows, s2, cols = np.frombuffer(fd.read(10), dtype='int8,int32,int8,int32', count=1)[0]
|
||
|
# Read whole matrix
|
||
|
buf = fd.read(rows * cols * sample_size)
|
||
|
if sample_size == 4 : vec = np.frombuffer(buf, dtype='float32')
|
||
|
elif sample_size == 8 : vec = np.frombuffer(buf, dtype='float64')
|
||
|
else : raise BadSampleSize
|
||
|
mat = np.reshape(vec,(rows,cols))
|
||
|
return mat
|
||
|
|
||
|
def _read_mat_ascii(fd):
|
||
|
rows = []
|
||
|
while 1:
|
||
|
line = fd.readline().decode()
|
||
|
if (len(line) == 0) : raise BadInputFormat # eof, should not happen!
|
||
|
if len(line.strip()) == 0 : continue # skip empty line
|
||
|
arr = line.strip().split()
|
||
|
if arr[-1] != ']':
|
||
|
rows.append(np.array(arr,dtype='float32')) # not last line
|
||
|
else:
|
||
|
rows.append(np.array(arr[:-1],dtype='float32')) # last line
|
||
|
mat = np.vstack(rows)
|
||
|
return mat
|
||
|
|
||
|
|
||
|
def _read_compressed_mat(fd, format):
|
||
|
""" Read a compressed matrix,
|
||
|
see: https://github.com/kaldi-asr/kaldi/blob/master/src/matrix/compressed-matrix.h
|
||
|
methods: CompressedMatrix::Read(...), CompressedMatrix::CopyToMat(...),
|
||
|
"""
|
||
|
assert(format == 'CM ') # The formats CM2, CM3 are not supported...
|
||
|
|
||
|
# Format of header 'struct',
|
||
|
global_header = np.dtype([('minvalue','float32'),('range','float32'),('num_rows','int32'),('num_cols','int32')]) # member '.format' is not written,
|
||
|
per_col_header = np.dtype([('percentile_0','uint16'),('percentile_25','uint16'),('percentile_75','uint16'),('percentile_100','uint16')])
|
||
|
|
||
|
# Mapping for percentiles in col-headers,
|
||
|
def uint16_to_float(value, min, range):
|
||
|
return np.float32(min + range * 1.52590218966964e-05 * value)
|
||
|
|
||
|
# Mapping for matrix elements,
|
||
|
def uint8_to_float_v2(vec, p0, p25, p75, p100):
|
||
|
# Split the vector by masks,
|
||
|
mask_0_64 = (vec <= 64);
|
||
|
mask_193_255 = (vec > 192);
|
||
|
mask_65_192 = (~(mask_0_64 | mask_193_255));
|
||
|
# Sanity check (useful but slow...),
|
||
|
# assert(len(vec) == np.sum(np.hstack([mask_0_64,mask_65_192,mask_193_255])))
|
||
|
# assert(len(vec) == np.sum(np.any([mask_0_64,mask_65_192,mask_193_255], axis=0)))
|
||
|
# Build the float vector,
|
||
|
ans = np.empty(len(vec), dtype='float32')
|
||
|
ans[mask_0_64] = p0 + (p25 - p0) / 64. * vec[mask_0_64]
|
||
|
ans[mask_65_192] = p25 + (p75 - p25) / 128. * (vec[mask_65_192] - 64)
|
||
|
ans[mask_193_255] = p75 + (p100 - p75) / 63. * (vec[mask_193_255] - 192)
|
||
|
return ans
|
||
|
|
||
|
# Read global header,
|
||
|
globmin, globrange, rows, cols = np.frombuffer(fd.read(16), dtype=global_header, count=1)[0]
|
||
|
|
||
|
# The data is structed as [Colheader, ... , Colheader, Data, Data , .... ]
|
||
|
# { cols }{ size }
|
||
|
col_headers = np.frombuffer(fd.read(cols*8), dtype=per_col_header, count=cols)
|
||
|
data = np.reshape(np.frombuffer(fd.read(cols*rows), dtype='uint8', count=cols*rows), newshape=(cols,rows)) # stored as col-major,
|
||
|
|
||
|
mat = np.empty((cols,rows), dtype='float32')
|
||
|
for i, col_header in enumerate(col_headers):
|
||
|
col_header_flt = [ uint16_to_float(percentile, globmin, globrange) for percentile in col_header ]
|
||
|
mat[i] = uint8_to_float_v2(data[i], *col_header_flt)
|
||
|
|
||
|
return mat.T # transpose! col-major -> row-major,
|
||
|
|
||
|
def write_ark_scp(key, mat, ark_fout, scp_out):
|
||
|
mat_offset = write_mat(ark_fout, mat, key)
|
||
|
scp_line = '{}\t{}:{}'.format(key, ark_fout.name, mat_offset)
|
||
|
scp_out.write(scp_line)
|
||
|
scp_out.write('\n')
|
||
|
|
||
|
# Writing,
|
||
|
def write_mat(file_or_fd, m, key=''):
|
||
|
""" write_mat(f, m, key='')
|
||
|
Write a binary kaldi matrix to filename or stream. Supports 32bit and 64bit floats.
|
||
|
Arguments:
|
||
|
file_or_fd : filename of opened file descriptor for writing,
|
||
|
m : the matrix to be stored,
|
||
|
key (optional) : used for writing ark-file, the utterance-id gets written before the matrix.
|
||
|
|
||
|
Example of writing single matrix:
|
||
|
kaldi_io.write_mat(filename, mat)
|
||
|
|
||
|
Example of writing arkfile:
|
||
|
with open(ark_file,'w') as f:
|
||
|
for key,mat in dict.iteritems():
|
||
|
kaldi_io.write_mat(f, mat, key=key)
|
||
|
"""
|
||
|
mat_offset = 0
|
||
|
fd = open_or_fd(file_or_fd, mode='wb')
|
||
|
if sys.version_info[0] == 3: assert(fd.mode == 'wb')
|
||
|
try:
|
||
|
if key != '' : fd.write((key+' ').encode("latin1")) # ark-files have keys (utterance-id),
|
||
|
mat_offset = fd.tell()
|
||
|
fd.write('\0B'.encode()) # we write binary!
|
||
|
# Data-type,
|
||
|
if m.dtype == 'float32': fd.write('FM '.encode())
|
||
|
elif m.dtype == 'float64': fd.write('DM '.encode())
|
||
|
else: raise UnsupportedDataType("'%s', please use 'float32' or 'float64'" % m.dtype)
|
||
|
# Dims,
|
||
|
fd.write('\04'.encode())
|
||
|
fd.write(struct.pack(np.dtype('uint32').char, m.shape[0])) # rows
|
||
|
fd.write('\04'.encode())
|
||
|
fd.write(struct.pack(np.dtype('uint32').char, m.shape[1])) # cols
|
||
|
# Data,
|
||
|
fd.write(m.tobytes())
|
||
|
finally:
|
||
|
if fd is not file_or_fd : fd.close()
|
||
|
return mat_offset
|
||
|
|
||
|
#################################################
|
||
|
# 'Posterior' kaldi type (posteriors, confusion network, nnet1 training targets, ...)
|
||
|
# Corresponds to: vector<vector<tuple<int,float> > >
|
||
|
# - outer vector: time axis
|
||
|
# - inner vector: records at the time
|
||
|
# - tuple: int = index, float = value
|
||
|
#
|
||
|
|
||
|
def read_cnet_ark(file_or_fd):
|
||
|
""" Alias of function 'read_post_ark()', 'cnet' = confusion network """
|
||
|
return read_post_ark(file_or_fd)
|
||
|
|
||
|
def read_post_ark(file_or_fd):
|
||
|
""" generator(key,vec<vec<int,float>>) = read_post_ark(file)
|
||
|
Returns generator of (key,posterior) tuples, read from ark file.
|
||
|
file_or_fd : ark, gzipped ark, pipe or opened file descriptor.
|
||
|
|
||
|
Iterate the ark:
|
||
|
for key,post in kaldi_io.read_post_ark(file):
|
||
|
...
|
||
|
|
||
|
Read ark to a 'dictionary':
|
||
|
d = { key:post for key,post in kaldi_io.read_post_ark(file) }
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
try:
|
||
|
key = read_key(fd)
|
||
|
while key:
|
||
|
post = read_post(fd)
|
||
|
yield key, post
|
||
|
key = read_key(fd)
|
||
|
finally:
|
||
|
if fd is not file_or_fd: fd.close()
|
||
|
|
||
|
def read_post(file_or_fd):
|
||
|
""" [post] = read_post(file_or_fd)
|
||
|
Reads single kaldi 'Posterior' in binary format.
|
||
|
|
||
|
The 'Posterior' is C++ type 'vector<vector<tuple<int,float> > >',
|
||
|
the outer-vector is usually time axis, inner-vector are the records
|
||
|
at given time, and the tuple is composed of an 'index' (integer)
|
||
|
and a 'float-value'. The 'float-value' can represent a probability
|
||
|
or any other numeric value.
|
||
|
|
||
|
Returns vector of vectors of tuples.
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
ans=[]
|
||
|
binary = fd.read(2).decode(); assert(binary == '\0B'); # binary flag
|
||
|
assert(fd.read(1).decode() == '\4'); # int-size
|
||
|
outer_vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # number of frames (or bins)
|
||
|
|
||
|
# Loop over 'outer-vector',
|
||
|
for i in range(outer_vec_size):
|
||
|
assert(fd.read(1).decode() == '\4'); # int-size
|
||
|
inner_vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # number of records for frame (or bin)
|
||
|
data = np.frombuffer(fd.read(inner_vec_size*10), dtype=[('size_idx','int8'),('idx','int32'),('size_post','int8'),('post','float32')], count=inner_vec_size)
|
||
|
assert(data[0]['size_idx'] == 4)
|
||
|
assert(data[0]['size_post'] == 4)
|
||
|
ans.append(data[['idx','post']].tolist())
|
||
|
|
||
|
if fd is not file_or_fd: fd.close()
|
||
|
return ans
|
||
|
|
||
|
|
||
|
#################################################
|
||
|
# Kaldi Confusion Network bin begin/end times,
|
||
|
# (kaldi stores CNs time info separately from the Posterior).
|
||
|
#
|
||
|
|
||
|
def read_cntime_ark(file_or_fd):
|
||
|
""" generator(key,vec<tuple<float,float>>) = read_cntime_ark(file_or_fd)
|
||
|
Returns generator of (key,cntime) tuples, read from ark file.
|
||
|
file_or_fd : file, gzipped file, pipe or opened file descriptor.
|
||
|
|
||
|
Iterate the ark:
|
||
|
for key,time in kaldi_io.read_cntime_ark(file):
|
||
|
...
|
||
|
|
||
|
Read ark to a 'dictionary':
|
||
|
d = { key:time for key,time in kaldi_io.read_post_ark(file) }
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
try:
|
||
|
key = read_key(fd)
|
||
|
while key:
|
||
|
cntime = read_cntime(fd)
|
||
|
yield key, cntime
|
||
|
key = read_key(fd)
|
||
|
finally:
|
||
|
if fd is not file_or_fd : fd.close()
|
||
|
|
||
|
def read_cntime(file_or_fd):
|
||
|
""" [cntime] = read_cntime(file_or_fd)
|
||
|
Reads single kaldi 'Confusion Network time info', in binary format:
|
||
|
C++ type: vector<tuple<float,float> >.
|
||
|
(begin/end times of bins at the confusion network).
|
||
|
|
||
|
Binary layout is '<num-bins> <beg1> <end1> <beg2> <end2> ...'
|
||
|
|
||
|
file_or_fd : file, gzipped file, pipe or opened file descriptor.
|
||
|
|
||
|
Returns vector of tuples.
|
||
|
"""
|
||
|
fd = open_or_fd(file_or_fd)
|
||
|
binary = fd.read(2).decode(); assert(binary == '\0B'); # assuming it's binary
|
||
|
|
||
|
assert(fd.read(1).decode() == '\4'); # int-size
|
||
|
vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # number of frames (or bins)
|
||
|
|
||
|
data = np.frombuffer(fd.read(vec_size*10), dtype=[('size_beg','int8'),('t_beg','float32'),('size_end','int8'),('t_end','float32')], count=vec_size)
|
||
|
assert(data[0]['size_beg'] == 4)
|
||
|
assert(data[0]['size_end'] == 4)
|
||
|
ans = data[['t_beg','t_end']].tolist() # Return vector of tuples (t_beg,t_end),
|
||
|
|
||
|
if fd is not file_or_fd : fd.close()
|
||
|
return ans
|
||
|
|
||
|
|
||
|
#################################################
|
||
|
# Segments related,
|
||
|
#
|
||
|
|
||
|
# Segments as 'Bool vectors' can be handy,
|
||
|
# - for 'superposing' the segmentations,
|
||
|
# - for frame-selection in Speaker-ID experiments,
|
||
|
def read_segments_as_bool_vec(segments_file):
|
||
|
""" [ bool_vec ] = read_segments_as_bool_vec(segments_file)
|
||
|
using kaldi 'segments' file for 1 wav, format : '<utt> <rec> <t-beg> <t-end>'
|
||
|
- t-beg, t-end is in seconds,
|
||
|
- assumed 100 frames/second,
|
||
|
"""
|
||
|
segs = np.loadtxt(segments_file, dtype='object,object,f,f', ndmin=1)
|
||
|
# Sanity checks,
|
||
|
assert(len(segs) > 0) # empty segmentation is an error,
|
||
|
assert(len(np.unique([rec[1] for rec in segs ])) == 1) # segments with only 1 wav-file,
|
||
|
# Convert time to frame-indexes,
|
||
|
start = np.rint([100 * rec[2] for rec in segs]).astype(int)
|
||
|
end = np.rint([100 * rec[3] for rec in segs]).astype(int)
|
||
|
# Taken from 'read_lab_to_bool_vec', htk.py,
|
||
|
frms = np.repeat(np.r_[np.tile([False,True], len(end)), False],
|
||
|
np.r_[np.c_[start - np.r_[0, end[:-1]], end-start].flat, 0])
|
||
|
assert np.sum(end-start) == np.sum(frms)
|
||
|
return frms
|
||
|
|