204 lines
5.8 KiB
Markdown
204 lines
5.8 KiB
Markdown
![]() |
# TPU Training Setup Guide for Brain-to-Text RNN
|
|||
|
|
|||
|
This guide explains how to use the TPU support that has been added to the brain-to-text RNN training code.
|
|||
|
|
|||
|
## Prerequisites
|
|||
|
|
|||
|
### 1. Install PyTorch XLA for TPU Support
|
|||
|
```bash
|
|||
|
# Install PyTorch XLA (adjust version as needed)
|
|||
|
pip install torch_xla[tpu] -f https://storage.googleapis.com/libtpu-releases/index.html
|
|||
|
|
|||
|
# Or for specific PyTorch version:
|
|||
|
pip install torch_xla==2.1.0 -f https://storage.googleapis.com/libtpu-releases/index.html
|
|||
|
```
|
|||
|
|
|||
|
### 2. Install Accelerate Library
|
|||
|
```bash
|
|||
|
pip install accelerate
|
|||
|
```
|
|||
|
|
|||
|
### 3. Verify TPU Access
|
|||
|
```bash
|
|||
|
# Check if TPU is available
|
|||
|
python -c "import torch_xla; import torch_xla.core.xla_model as xm; print(f'TPU device: {xm.xla_device()}')"
|
|||
|
```
|
|||
|
|
|||
|
## Configuration Setup
|
|||
|
|
|||
|
### 1. Enable TPU in Configuration File
|
|||
|
|
|||
|
Update your `rnn_args.yaml` file with TPU settings:
|
|||
|
|
|||
|
```yaml
|
|||
|
# TPU and distributed training settings
|
|||
|
use_tpu: true # Enable TPU training
|
|||
|
num_tpu_cores: 8 # Number of TPU cores (8 for v3-8 or v4-8)
|
|||
|
gradient_accumulation_steps: 1 # Gradient accumulation for large effective batch size
|
|||
|
dataloader_num_workers: 0 # Must be 0 for TPU to avoid multiprocessing issues
|
|||
|
use_amp: true # Enable mixed precision (bfloat16)
|
|||
|
|
|||
|
# Adjust batch size for multi-core TPU
|
|||
|
dataset:
|
|||
|
batch_size: 8 # Per-core batch size (total = 8 cores × 8 = 64)
|
|||
|
```
|
|||
|
|
|||
|
### 2. TPU-Optimized Hyperparameters
|
|||
|
|
|||
|
Recommended adjustments for TPU training:
|
|||
|
|
|||
|
```yaml
|
|||
|
# Learning rate scaling for distributed training
|
|||
|
lr_max: 0.005 # May need to scale with number of cores
|
|||
|
lr_max_day: 0.005
|
|||
|
|
|||
|
# Batch size considerations
|
|||
|
dataset:
|
|||
|
batch_size: 8 # Per-core batch size
|
|||
|
days_per_batch: 4 # Keep consistent across cores
|
|||
|
```
|
|||
|
|
|||
|
## Training Launch Options
|
|||
|
|
|||
|
### Method 1: Using the TPU Launch Script (Recommended)
|
|||
|
|
|||
|
```bash
|
|||
|
# Basic TPU training with 8 cores
|
|||
|
python launch_tpu_training.py --config rnn_args.yaml --num_cores 8
|
|||
|
|
|||
|
# Check TPU environment only
|
|||
|
python launch_tpu_training.py --check_only
|
|||
|
|
|||
|
# Custom configuration file
|
|||
|
python launch_tpu_training.py --config my_tpu_config.yaml --num_cores 8
|
|||
|
```
|
|||
|
|
|||
|
### Method 2: Direct Accelerate Launch
|
|||
|
|
|||
|
```bash
|
|||
|
# Configure accelerate (one-time setup)
|
|||
|
accelerate config
|
|||
|
|
|||
|
# Or use provided TPU config
|
|||
|
export ACCELERATE_CONFIG_FILE=accelerate_config_tpu.yaml
|
|||
|
|
|||
|
# Launch training
|
|||
|
accelerate launch --config_file accelerate_config_tpu.yaml train_model.py --config_path rnn_args.yaml
|
|||
|
```
|
|||
|
|
|||
|
### Method 3: Manual XLA Launch (Advanced)
|
|||
|
|
|||
|
```bash
|
|||
|
# Set TPU environment variables
|
|||
|
export TPU_CORES=8
|
|||
|
export XLA_USE_BF16=1
|
|||
|
|
|||
|
# Launch with PyTorch XLA
|
|||
|
python -m torch_xla.distributed.xla_dist --tpu --num_devices 8 train_model.py --config_path rnn_args.yaml
|
|||
|
```
|
|||
|
|
|||
|
## Key TPU Features Implemented
|
|||
|
|
|||
|
### 1. Distributed Training Support
|
|||
|
- Automatic model parallelization across 8 TPU cores
|
|||
|
- Synchronized gradient updates across all cores
|
|||
|
- Proper checkpoint saving/loading for distributed training
|
|||
|
|
|||
|
### 2. Mixed Precision Training
|
|||
|
- Automatic bfloat16 precision for TPU optimization
|
|||
|
- Faster training with maintained numerical stability
|
|||
|
- Reduced memory usage
|
|||
|
|
|||
|
### 3. TPU-Optimized Data Loading
|
|||
|
- Single-threaded data loading (num_workers=0) for TPU compatibility
|
|||
|
- Automatic data distribution across TPU cores
|
|||
|
- Efficient batch processing
|
|||
|
|
|||
|
### 4. Inference Support
|
|||
|
- TPU-compatible inference methods added to trainer class
|
|||
|
- `inference()` and `inference_batch()` methods for production use
|
|||
|
- Automatic mixed precision during inference
|
|||
|
|
|||
|
## Performance Optimization Tips
|
|||
|
|
|||
|
### 1. Batch Size Tuning
|
|||
|
- Start with total batch size = 64 (8 cores × 8 per core)
|
|||
|
- Increase gradually if memory allows
|
|||
|
- Monitor TPU utilization with `top` command
|
|||
|
|
|||
|
### 2. Gradient Accumulation
|
|||
|
- Use `gradient_accumulation_steps` to simulate larger batch sizes
|
|||
|
- Effective batch size = batch_size × num_cores × gradient_accumulation_steps
|
|||
|
|
|||
|
### 3. Learning Rate Scaling
|
|||
|
- Consider scaling learning rate with number of cores
|
|||
|
- Linear scaling: `lr_new = lr_base × num_cores`
|
|||
|
- May need warmup adjustment for large batch training
|
|||
|
|
|||
|
### 4. Memory Management
|
|||
|
- TPU v3-8: 128GB HBM memory total
|
|||
|
- TPU v4-8: 512GB HBM memory total
|
|||
|
- Monitor memory usage to avoid OOM errors
|
|||
|
|
|||
|
## Monitoring and Debugging
|
|||
|
|
|||
|
### 1. TPU Utilization
|
|||
|
```bash
|
|||
|
# Monitor TPU usage
|
|||
|
watch -n 1 'python -c "import torch_xla.core.xla_model as xm; print(f\"TPU cores: {xm.xrt_world_size()}\")"'
|
|||
|
```
|
|||
|
|
|||
|
### 2. Training Logs
|
|||
|
- Training logs include device information and core count
|
|||
|
- Monitor validation metrics across all cores
|
|||
|
- Check for synchronization issues in distributed training
|
|||
|
|
|||
|
### 3. Common Issues and Solutions
|
|||
|
|
|||
|
**Issue**: "No TPU devices found"
|
|||
|
- **Solution**: Verify TPU runtime is started and accessible
|
|||
|
|
|||
|
**Issue**: "DataLoader workers > 0 causes hangs"
|
|||
|
- **Solution**: Set `dataloader_num_workers: 0` in config
|
|||
|
|
|||
|
**Issue**: "Mixed precision errors"
|
|||
|
- **Solution**: Ensure `use_amp: true` and PyTorch XLA supports bfloat16
|
|||
|
|
|||
|
**Issue**: "Gradient synchronization timeouts"
|
|||
|
- **Solution**: Check network connectivity between TPU cores
|
|||
|
|
|||
|
## Example Training Command
|
|||
|
|
|||
|
```bash
|
|||
|
# Complete TPU training example
|
|||
|
cd model_training_nnn
|
|||
|
|
|||
|
# 1. Update config for TPU
|
|||
|
vim rnn_args.yaml # Set use_tpu: true, num_tpu_cores: 8
|
|||
|
|
|||
|
# 2. Launch TPU training
|
|||
|
python launch_tpu_training.py --config rnn_args.yaml --num_cores 8
|
|||
|
|
|||
|
# 3. Monitor training progress
|
|||
|
tail -f trained_models/baseline_rnn/training_log
|
|||
|
```
|
|||
|
|
|||
|
## Configuration Reference
|
|||
|
|
|||
|
### Required TPU Settings
|
|||
|
```yaml
|
|||
|
use_tpu: true
|
|||
|
num_tpu_cores: 8
|
|||
|
dataloader_num_workers: 0
|
|||
|
use_amp: true
|
|||
|
```
|
|||
|
|
|||
|
### Optional TPU Optimizations
|
|||
|
```yaml
|
|||
|
gradient_accumulation_steps: 1
|
|||
|
dataset:
|
|||
|
batch_size: 8 # Per-core batch size
|
|||
|
mixed_precision: bf16
|
|||
|
```
|
|||
|
|
|||
|
This TPU implementation allows you to leverage all 8 cores of your TPU for both training and inference, with automatic distributed training management through the Accelerate library.
|