✅ **even_batches Error RESOLVED** - No more `ValueError: You need to use 'even_batches=False'`
❌ **NEW ERROR**: `TypeError: 'NoneType' object is not iterable`
```
File "/usr/local/lib/python3.12/site-packages/accelerate/data_loader.py", line 221, in _iter_with_no_split
for idx, batch in enumerate(self.batch_sampler):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: 'NoneType' object is not iterable
```
**Root Cause**: `batch_sampler` becomes `None` when our DataLoader has `batch_size=None`
### Current Investigation
- The issue is in Accelerate's data_loader.py line 221
- Our custom dataset returns full batches, so we use `batch_size=None` in DataLoader
- But Accelerate expects a proper batch_sampler when iterating
- This is a fundamental incompatibility between our batching approach and Accelerate's expectations
## FINAL SOLUTION ✅
### Problem Resolution
1.~~even_batches Error~~ ✅ RESOLVED with DataLoaderConfiguration
2.~~batch_sampler None Error~~ ✅ RESOLVED with custom collate_fn
### Final Implementation
```python
# In rnn_trainer.py prepare_dataloaders()
# Custom collate function that handles pre-batched data from our dataset
def collate_fn(batch):
# Our dataset returns full batches, so batch will be a list of single batch dict
# Extract the first (and only) element since our dataset.__getitem__() returns a full batch
if len(batch) == 1 and isinstance(batch[0], dict):
return batch[0]
else:
# Fallback for unexpected batch structure
return batch
# DataLoader configuration compatible with Accelerate
self.train_loader = DataLoader(
self.train_dataset,
batch_size = 1, # Use batch_size=1 since dataset returns full batches
shuffle = shuffle_setting,
num_workers = workers_setting,
pin_memory = True,
collate_fn = collate_fn
)
```
**Key Insight**: Our dataset's `__getitem__()` returns complete batches, but Accelerate expects individual samples. The solution is to use `batch_size=1` and a custom `collate_fn` that unwraps the pre-batched data.