2025-10-12 21:31:07 +08:00
# TPU Training Issues Record
## Core Problem
**Primary Error**: `ValueError: You need to use 'even_batches=False' when the batch sampler has no batch size`
This error occurs when using TPU with Hugging Face Accelerate framework and custom DataLoaders that have `batch_size=None` .
## Root Cause Analysis
1. Our custom dataset returns full batches (not individual samples)
2. DataLoader is created with `batch_size=None` because batching is handled by the dataset
3. TPU training with Accelerate requires `even_batches=False` for this configuration
4. The `even_batches` parameter needs to be set in the DataLoader preparation, not Accelerator initialization
## Failed Solution Attempts
### Attempt 1: Adding even_batches to Accelerator.__init__()
```python
self.accelerator = Accelerator(
mixed_precision='bf16',
gradient_accumulation_steps=1,
even_batches=False # ❌ WRONG - This parameter doesn't exist in Accelerator.__init__()
)
```
**Error**: `TypeError: Accelerator.__init__() got an unexpected keyword argument 'even_batches'`
### Attempt 2: Complex TPU-specific DataLoader handling
- Created conditional TPU/GPU logic
- Manual data movement with `to(device)`
- Custom collate_fn modifications
- Result: Overengineered solution that didn't address root cause
### Attempt 3: Memory optimization
- Reduced TPU cores from 8 to 2
- Reduced batch size
- Misunderstood TPU memory allocation (fewer cores = less total memory, not more per core)
### Attempt 4: Removing all TPU-specific logic
- Let Accelerator handle everything automatically
- Result: Same even_batches error returned
## Correct Solution
The `even_batches=False` parameter should be passed using `DataLoaderConfiguration` when initializing the Accelerator:
```python
from accelerate import Accelerator, DataLoaderConfiguration
# Configure DataLoader behavior for TPU
dataloader_config = DataLoaderConfiguration(
even_batches=False # Required for batch_size=None DataLoaders
)
self.accelerator = Accelerator(
mixed_precision='bf16' if args.get('use_amp', True) else 'no',
gradient_accumulation_steps=args.get('gradient_accumulation_steps', 1),
log_with=None,
project_dir=args.get('output_dir', './output'),
dataloader_config=dataloader_config # ✅ CORRECT - Pass DataLoaderConfiguration
)
```
## Technical Context
- **Model**: Brain-to-text RNN with 687M parameters
- **Dataset**: Custom dataset that returns full batches (batch_size=None in DataLoader)
- **TPU Config**: 8 cores × 16GB = 128GB total memory
- **Batch Size**: 64
- **Framework**: PyTorch XLA with Hugging Face Accelerate
## Key Files Modified
- `model_training_nnn/rnn_trainer.py` - Main trainer class
- `model_training_nnn/rnn_args.yaml` - Configuration file
- `model_training_nnn/dataset.py` - Custom dataset class
## Memory Allocation Facts
- TPU v5e-8: 8 cores × 16GB = 128GB total
- Fewer cores = LESS total memory (not more per core)
2025-10-12 21:36:33 +08:00
## Latest Status (2025-10-12)
### After DataLoaderConfiguration Fix
✅ **even_batches Error RESOLVED** - No more `ValueError: You need to use 'even_batches=False'`
❌ **NEW ERROR** : `TypeError: 'NoneType' object is not iterable`
```
File "/usr/local/lib/python3.12/site-packages/accelerate/data_loader.py", line 221, in _iter_with_no_split
for idx, batch in enumerate(self.batch_sampler):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: 'NoneType' object is not iterable
```
**Root Cause**: `batch_sampler` becomes `None` when our DataLoader has `batch_size=None`
### Current Investigation
- The issue is in Accelerate's data_loader.py line 221
- Our custom dataset returns full batches, so we use `batch_size=None` in DataLoader
- But Accelerate expects a proper batch_sampler when iterating
- This is a fundamental incompatibility between our batching approach and Accelerate's expectations
2025-10-12 21:47:30 +08:00
## COMPREHENSIVE SOLUTION ✅ (v2.0)
2025-10-12 21:36:33 +08:00
2025-10-12 21:43:12 +08:00
### Problem Resolution Status
2025-10-12 21:36:33 +08:00
1. ~~even_batches Error~~ ✅ RESOLVED with DataLoaderConfiguration
2. ~~batch_sampler None Error~~ ✅ RESOLVED with custom collate_fn
2025-10-12 21:47:30 +08:00
3. ~~Data Type Mismatch Error~~ ✅ RESOLVED - Fixed both input conversion and padding dtype preservation
2025-10-12 21:43:12 +08:00
### Latest Error (2025-10-12 13:38)
```
INVALID_ARGUMENT: Call parameter must match argument; got parameter 0 shape: f32[64,7168], argument shape: bf16[64,7168].
```
**Root Cause**: Mixed precision training with `mixed_precision='bf16'` expects all tensors to be `bf16` , but our data is being loaded as `f32` (float32).
**Analysis**:
- We enabled `bf16` mixed precision in Accelerator configuration
- Model parameters are automatically converted to `bf16`
- But input data remains as `f32` , causing type mismatch during forward pass
- TPU XLA compiler is strict about type matching
2025-10-12 21:47:30 +08:00
### Solution: Comprehensive Data Type Conversion in Dataset
Fixed in `dataset.py` with two changes:
**1. Convert input data to bf16 (line 130):**
2025-10-12 21:43:12 +08:00
```python
# Before (causes type mismatch):
input_features = torch.from_numpy(g['input_features'][:]) # defaults to f32
# After (TPU compatible):
input_features = torch.from_numpy(g['input_features'][:]).to(torch.bfloat16) # convert to bf16 for TPU compatibility
```
2025-10-12 21:36:33 +08:00
2025-10-12 21:47:30 +08:00
**2. Preserve bf16 dtype after padding (line 149):**
```python
# Before (pad_sequence converts back to f32):
batch['input_features'] = pad_sequence(batch['input_features'], batch_first = True, padding_value = 0)
# After (explicitly maintain bf16):
batch['input_features'] = pad_sequence(batch['input_features'], batch_first = True, padding_value = 0).to(torch.bfloat16)
```
**Root Cause**: `pad_sequence` function resets dtype to default (f32) even if input tensors are bf16.
2025-10-12 21:36:33 +08:00
### Final Implementation
```python
# In rnn_trainer.py prepare_dataloaders()
# Custom collate function that handles pre-batched data from our dataset
def collate_fn(batch):
# Our dataset returns full batches, so batch will be a list of single batch dict
# Extract the first (and only) element since our dataset.__getitem__() returns a full batch
if len(batch) == 1 and isinstance(batch[0], dict):
return batch[0]
else:
# Fallback for unexpected batch structure
return batch
# DataLoader configuration compatible with Accelerate
self.train_loader = DataLoader(
self.train_dataset,
batch_size = 1, # Use batch_size=1 since dataset returns full batches
shuffle = shuffle_setting,
num_workers = workers_setting,
pin_memory = True,
collate_fn = collate_fn
)
```
**Key Insight**: Our dataset's `__getitem__()` returns complete batches, but Accelerate expects individual samples. The solution is to use `batch_size=1` and a custom `collate_fn` that unwraps the pre-batched data.
2025-10-12 21:43:12 +08:00
## Complete Solution Summary
### Three-Step Fix for TPU Training
1. **DataLoaderConfiguration** : Added `even_batches=False` for batch_size=1 DataLoaders
2. **Custom collate_fn** : Handles pre-batched data from our dataset
3. **Data Type Conversion** : Convert input data to `bf16` for mixed precision compatibility
### Files Modified
- [rnn_trainer.py:44-46 ](f:\BRAIN-TO-TEXT\nejm-brain-to-text.worktrees\dev2\model_training_nnn\rnn_trainer.py#L44-L46 ): Added DataLoaderConfiguration
- [rnn_trainer.py:193-210 ](f:\BRAIN-TO-TEXT\nejm-brain-to-text.worktrees\dev2\model_training_nnn\rnn_trainer.py#L193-L210 ): Custom collate_fn and batch_size=1
- [dataset.py:130 ](f:\BRAIN-TO-TEXT\nejm-brain-to-text.worktrees\dev2\model_training_nnn\dataset.py#L130 ): Convert neural data to bf16
2025-10-12 21:47:30 +08:00
- [dataset.py:149 ](f:\BRAIN-TO-TEXT\nejm-brain-to-text.worktrees\dev2\model_training_nnn\dataset.py#L149 ): Preserve bf16 dtype after padding
2025-10-12 21:43:12 +08:00
### Next Steps
2025-10-12 21:36:33 +08:00
1. ~~Implement even_batches=False~~ ✅ DONE
2. ~~Fix batch_sampler None issue~~ ✅ DONE
2025-10-12 21:43:12 +08:00
3. ~~Fix data type mismatch~~ ✅ DONE
4. Test TPU training with complete solution
5. Integrate final solution into CLAUDE.md
2025-10-12 21:31:07 +08:00
## Lessons Learned
- Don't overcomplicate TPU conversion - it should be straightforward
- Read Accelerate documentation carefully for parameter placement
- Document issues immediately to avoid confusion
- TPU memory allocation: fewer cores = less total memory