Files
b2txt25/model_training_lstm/rnn_model.py

144 lines
6.2 KiB
Python
Raw Permalink Normal View History

2025-10-06 15:17:44 +08:00
import torch
from torch import nn
class LSTMDecoder(nn.Module):
'''
Defines the LSTM decoder
This class combines day-specific input layers, an LSTM, and an output classification layer
'''
def __init__(self,
neural_dim,
n_units,
n_days,
n_classes,
rnn_dropout = 0.0,
input_dropout = 0.0,
n_layers = 5,
patch_size = 0,
patch_stride = 0,
):
'''
neural_dim (int) - number of channels in a single timestep (e.g. 512)
n_units (int) - number of hidden units in each recurrent layer - equal to the size of the hidden state
n_days (int) - number of days in the dataset
n_classes (int) - number of classes
rnn_dropout (float) - percentage of units to droupout during training
input_dropout (float) - percentage of input units to dropout during training
n_layers (int) - number of recurrent layers
patch_size (int) - the number of timesteps to concat on initial input layer - a value of 0 will disable this "input concat" step
patch_stride(int) - the number of timesteps to stride over when concatenating initial input
'''
super(LSTMDecoder, self).__init__()
self.neural_dim = neural_dim
self.n_units = n_units
self.n_classes = n_classes
self.n_layers = n_layers
self.n_days = n_days
self.rnn_dropout = rnn_dropout
self.input_dropout = input_dropout
self.patch_size = patch_size
self.patch_stride = patch_stride
# Parameters for the day-specific input layers
self.day_layer_activation = nn.Softsign() # basically a shallower tanh
# Set weights for day layers to be identity matrices so the model can learn its own day-specific transformations
self.day_weights = nn.ParameterList(
[nn.Parameter(torch.eye(self.neural_dim)) for _ in range(self.n_days)]
)
self.day_biases = nn.ParameterList(
[nn.Parameter(torch.zeros(1, self.neural_dim)) for _ in range(self.n_days)]
)
self.day_layer_dropout = nn.Dropout(input_dropout)
self.input_size = self.neural_dim
# If we are using "strided inputs", then the input size of the first recurrent layer will actually be in_size * patch_size
if self.patch_size > 0:
self.input_size *= self.patch_size
self.lstm = nn.LSTM(
input_size = self.input_size,
hidden_size = self.n_units,
num_layers = self.n_layers,
dropout = self.rnn_dropout,
batch_first = True, # The first dim of our input is the batch dim
bidirectional = False,
)
# Set recurrent units to have orthogonal param init and input layers to have xavier init
for name, param in self.lstm.named_parameters():
if "weight_hh" in name:
nn.init.orthogonal_(param)
elif "weight_ih" in name:
nn.init.xavier_uniform_(param)
elif "bias" in name:
# Initialize biases to zero first
nn.init.zeros_(param)
# Set forget gate bias to 1.0 to prevent vanishing gradients
# LSTM bias structure: [input_gate, forget_gate, cell_gate, output_gate]
# Each gate has hidden_size parameters
hidden_size = param.size(0) // 4
param.data[hidden_size:2*hidden_size].fill_(1.0) # forget gate bias = 1.0
# Prediciton head. Weight init to xavier
self.out = nn.Linear(self.n_units, self.n_classes)
nn.init.xavier_uniform_(self.out.weight)
# Learnable initial hidden states
self.h0 = nn.Parameter(nn.init.xavier_uniform_(torch.zeros(1, 1, self.n_units)))
def forward(self, x, day_idx, states = None, return_state = False):
'''
x (tensor) - batch of examples (trials) of shape: (batch_size, time_series_length, neural_dim)
day_idx (tensor) - tensor which is a list of day indexs corresponding to the day of each example in the batch x.
'''
# Apply day-specific layer to (hopefully) project neural data from the different days to the same latent space
day_weights = torch.stack([self.day_weights[i] for i in day_idx], dim=0)
day_biases = torch.cat([self.day_biases[i] for i in day_idx], dim=0).unsqueeze(1)
x = torch.einsum("btd,bdk->btk", x, day_weights) + day_biases
x = self.day_layer_activation(x)
# Apply dropout to the ouput of the day specific layer
if self.input_dropout > 0:
x = self.day_layer_dropout(x)
# (Optionally) Perform input concat operation
if self.patch_size > 0:
x = x.unsqueeze(1) # [batches, 1, timesteps, feature_dim]
x = x.permute(0, 3, 1, 2) # [batches, feature_dim, 1, timesteps]
# Extract patches using unfold (sliding window)
x_unfold = x.unfold(3, self.patch_size, self.patch_stride) # [batches, feature_dim, 1, num_patches, patch_size]
# Remove dummy height dimension and rearrange dimensions
x_unfold = x_unfold.squeeze(2) # [batches, feature_dum, num_patches, patch_size]
x_unfold = x_unfold.permute(0, 2, 3, 1) # [batches, num_patches, patch_size, feature_dim]
# Flatten last two dimensions (patch_size and features)
x = x_unfold.reshape(x.size(0), x_unfold.size(1), -1)
# Determine initial hidden states
if states is None:
h0 = self.h0.expand(self.n_layers, x.shape[0], self.n_units).contiguous()
c0 = torch.zeros_like(h0) # Initialize cell state to zeros
states = (h0, c0)
# Pass input through RNN
output, hidden_states = self.lstm(x, states)
# Compute logits
logits = self.out(output)
if return_state:
return logits, hidden_states
return logits